A026732 a(n) = Sum_{k=0..n} T(n,k), T given by A026725.
1, 2, 4, 9, 18, 40, 80, 176, 352, 769, 1538, 3343, 6686, 14477, 28954, 62505, 125010, 269216, 538432, 1157244, 2314488, 4966260, 9932520, 21282622, 42565244, 91096110, 182192220, 389515284, 779030568, 1664015246, 3328030492
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([0..30], n-> Sum([0..n], k-> T(n,k) )); # G. C. Greubel, Oct 26 2019
-
Maple
A026732 := proc(n) add(A026725(n,k),k=0..n) ; end proc: seq(A026732(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
-
PARI
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(31, n, sum(k=0,n-1, T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 26 2019
Formula
Conjecture: +(-n+1)*a(n) +2*a(n-1) +3*(3*n-7)*a(n-2) -10*a(n-3) +(-23*n+95)*a(n-4) +6*a(n-5) +(11*n-95)*a(n-6) +2*a(n-7) +4*(n-7)*a(n-8)=0. - R. J. Mathar, Oct 26 2019