A026733 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.
1, 1, 3, 5, 13, 23, 57, 103, 249, 455, 1083, 1993, 4693, 8679, 20275, 37633, 87377, 162643, 375789, 701075, 1613413, 3015563, 6916957, 12948083, 29617161, 55513327, 126678893, 237705547, 541325021, 1016736115, 2311294377
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A026733 := proc(n) add(A026725(n,k),k=0..floor(n/2)) ; end proc: seq(A026733(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
-
PARI
T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(31, n, sum(k=0,floor(n-1/2), T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
Formula
Conjecture: (-n+2)*a(n) +(n-2)*a(n-1) +2*(4*n-13)*a(n-2) +8*(-n+4)*a(n-3) +5*(-3*n+14)*a(n-4) +(15*n-94)*a(n-5) +2*(-2*n+9)*a(n-6) +4*(n-6)*a(n-7)=0. - R. J. Mathar, Oct 26 2019