cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026733 a(n) = Sum_{k=0..floor(n/2)} T(n,k), T given by A026725.

Original entry on oeis.org

1, 1, 3, 5, 13, 23, 57, 103, 249, 455, 1083, 1993, 4693, 8679, 20275, 37633, 87377, 162643, 375789, 701075, 1613413, 3015563, 6916957, 12948083, 29617161, 55513327, 126678893, 237705547, 541325021, 1016736115, 2311294377
Offset: 0

Views

Author

Keywords

Programs

  • Maple
    A026733 := proc(n)
        add(A026725(n,k),k=0..floor(n/2)) ;
    end proc:
    seq(A026733(n),n=0..10) ; # R. J. Mathar, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(31, n, sum(k=0,floor(n-1/2), T(n-1,k)) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019

Formula

Conjecture: (-n+2)*a(n) +(n-2)*a(n-1) +2*(4*n-13)*a(n-2) +8*(-n+4)*a(n-3) +5*(-3*n+14)*a(n-4) +(15*n-94)*a(n-5) +2*(-2*n+9)*a(n-6) +4*(n-6)*a(n-7)=0. - R. J. Mathar, Oct 26 2019