cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026735 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026725.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 15, 28, 43, 71, 130, 201, 331, 597, 928, 1525, 2720, 4245, 6965, 12315, 19280, 31595, 55472, 87067, 142539, 248802, 391341, 640143, 1111864, 1752007, 2863871, 4953162, 7817033, 12770195, 22004810, 34775005, 56779815
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    T:= function(n,k)
        if n<0 then return 0;
        elif k=0 or k=n then return 1;
        elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..30], n-> Sum([0..Int(n/2)], k-> T(n-k,k) )); # G. C. Greubel, Oct 26 2019
  • Maple
    A026725:= proc(n,k) option remember;
        if n<0 or k<0 then 0;
        elif k=0 or k=n then 1;
        elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ;
       else procname(n-1,k-1)+procname(n-1,k) ;
       fi;
    end proc:
    seq(add(A026725(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 26 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
  • PARI
    T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )));
    vector(31, n, sum(j=0,(n-1)\2, T(n-j,j)) ) \\ G. C. Greubel, Oct 26 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum( T(n-j, j) for j in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
    

Formula

Conjecture: G.f.:-1/2*(2*x^6-5*x^4+8*x^3+x-2+x*(x-1)*(x^2+x+1)*(1-4*x^3)^(1/2))/(x^6+4*x^3-1)/(x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009