A026735 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026725.
1, 1, 2, 3, 6, 9, 15, 28, 43, 71, 130, 201, 331, 597, 928, 1525, 2720, 4245, 6965, 12315, 19280, 31595, 55472, 87067, 142539, 248802, 391341, 640143, 1111864, 1752007, 2863871, 4953162, 7817033, 12770195, 22004810, 34775005, 56779815
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
T:= function(n,k) if n<0 then return 0; elif k=0 or k=n then return 1; elif 2*k=n-1 then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([0..30], n-> Sum([0..Int(n/2)], k-> T(n-k,k) )); # G. C. Greubel, Oct 26 2019
-
Maple
A026725:= proc(n,k) option remember; if n<0 or k<0 then 0; elif k=0 or k=n then 1; elif 2*k = n-1 then procname(n-1,k-1)+procname(n-2,k-1) + procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end proc: seq(add(A026725(n-k,k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Oct 26 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k==(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]]; Table[Sum[T[n-k, k], {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Oct 26 2019 *)
-
PARI
T(n,k) = if(n<0, 0, if(k==n || k==0, 1, if(2*k==n-1, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ))); vector(31, n, sum(j=0,(n-1)\2, T(n-j,j)) ) \\ G. C. Greubel, Oct 26 2019
-
Sage
@CachedFunction def T(n, k): if (n<0): return 0 elif (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum( T(n-j, j) for j in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Oct 26 2019
Formula
Conjecture: G.f.:-1/2*(2*x^6-5*x^4+8*x^3+x-2+x*(x-1)*(x^2+x+1)*(1-4*x^3)^(1/2))/(x^6+4*x^3-1)/(x^2+x-1). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009