cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026742 a(n) = T(n, floor(n/2)), T given by A026736.

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 21, 43, 79, 173, 309, 707, 1237, 2917, 5026, 12111, 20626, 50503, 85242, 211263, 354080, 885831, 1476368, 3720995, 6173634, 15652239, 25873744, 65913927, 108628550, 277822147, 456710589, 1171853635, 1922354351
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n,k)
        if k=0 or k=n then return 1;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    Flat(List([0..20], n-> T(n,Int(n/2)) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n--; T(n, n\2)) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [T(n, floor(n/2)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
    

Formula

a(n) ~ phi^(3*n/2 - (7 + (-1)^n)/4) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019