A026742 a(n) = T(n, floor(n/2)), T given by A026736.
1, 1, 2, 3, 6, 11, 21, 43, 79, 173, 309, 707, 1237, 2917, 5026, 12111, 20626, 50503, 85242, 211263, 354080, 885831, 1476368, 3720995, 6173634, 15652239, 25873744, 65913927, 108628550, 277822147, 456710589, 1171853635, 1922354351
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A026736.
Programs
-
GAP
T:= function(n,k) if k=0 or k=n then return 1; elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; Flat(List([0..20], n-> T(n,Int(n/2)) )); # G. C. Greubel, Jul 19 2019
-
Mathematica
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] +T[n-2, k-1] +T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[T[n, Floor[n/2]], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
-
PARI
T(n,k) = if(k==n || k==0, 1, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(20, n, n--; T(n, n\2)) \\ G. C. Greubel, Jul 19 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [T(n, floor(n/2)) for n in (0..40)] # G. C. Greubel, Jul 19 2019
Formula
a(n) ~ phi^(3*n/2 - (7 + (-1)^n)/4) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019