cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026744 a(n) = Sum_{j=0..floor(n/2)} T(n,j), T given by A026736.

Original entry on oeis.org

1, 1, 3, 4, 12, 18, 51, 81, 220, 361, 952, 1595, 4118, 6999, 17787, 30548, 76696, 132766, 330148, 575054, 1418946, 2483812, 6089912, 10703456, 26104178, 46034722, 111769554, 197665364, 478085534, 847542518, 2043167075
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]];
    Table[Sum[T[n, j], {j, 0, Floor[n/2]}], {n, 0, 35}] (* G. C. Greubel, Jul 22 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum(T(n, j) for j in (0..floor(n/2))) for n in (0..35)] # G. C. Greubel, Jul 22 2019