A026745 a(n) = Sum_{j=0..n} Sum_{i=0..n} T(j,i), T given by A026736.
1, 3, 7, 15, 32, 66, 139, 285, 599, 1227, 2577, 5277, 11075, 22671, 47543, 97287, 203860, 417006, 873175, 1785513, 3736210, 7637604, 15972143, 32641221, 68224004, 139389570, 291199307, 594818781, 1242097912, 2536656174
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 (terms 0..1000 from G. C. Greubel)
Crossrefs
Cf. A026736.
Programs
-
Mathematica
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; b[n_]:= Sum[T[n, j], {j,0,n}]; Table[Sum[b[j], {j,0,n}], {n,0,35}] (* G. C. Greubel, Jul 22 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n,2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) def b(n): return sum(T(n, j) for j in (0..n)) [sum(b(j) for j in (0..n)) for n in (0..35)] # G. C. Greubel, Jul 22 2019
Formula
a(n) ~ c * phi^(3*n/2), where c = 1/2 + 3*phi^2 / (2*sqrt(5)) if n is even, c = 3*phi^(5/2) / (2*sqrt(5)) if n is odd and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 22 2019