cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026767 a(n) = Sum_{i=0..n} Sum_{j=0..n} T(i,j), T given by A026758.

Original entry on oeis.org

1, 3, 7, 16, 34, 75, 157, 345, 721, 1588, 3322, 7342, 15382, 34117, 71587, 159322, 334792, 747507, 1572937, 3522561, 7421809, 16667530, 35158972, 79162689, 167170123, 377291856, 797535322, 1803925336, 3816705364
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A026765.

Crossrefs

Programs

  • Maple
    T:= proc(n,k) option remember;
       if n<0 then 0;
       elif k=0 or k = n then 1;
       elif type(n,'odd') and k <= (n-1)/2 then
            procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;
       else
           procname(n-1,k-1)+procname(n-1,k) ;
       end if ;
    end proc;
    seq( add(add(T(j,k), k=0..n), j=0..n), n=0..30); # G. C. Greubel, Oct 31 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[OddQ[n] && k<=(n - 1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[Sum[T[j,k], {k,0,n}, {j,0,n}], {n, 0, 30}] (* G. C. Greubel, Oct 31 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (n<0): return 0
        elif (k==0 or k==n): return 1
        elif (mod(n,2)==1 and k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)
        else: return T(n-1,k-1) + T(n-1,k)
    [sum(sum(T(j,k) for k in (0..n)) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Oct 31 2019

Formula

Conjecture: (n+1)*a(n) +(-n-3)*a(n-1) +2*(-5*n+4)*a(n-2) +2*(5*n+3)*a(n-3) +(29*n-83)*a(n-4) +(-29*n+61)*a(n-5) +10*(-2*n+11)*a(n-6) +20*(n-5)*a(n-7)=0. - R. J. Mathar, Jun 30 2013