A026776 a(n) = Sum_{k=0..n} T(n,k), T given by A026769.
1, 2, 4, 9, 19, 43, 93, 212, 466, 1070, 2382, 5506, 12386, 28800, 65356, 152745, 349183, 819639, 1885361, 4441719, 10270279, 24269629, 56363319, 133529869, 311255601, 738947515, 1727873793, 4109314729, 9634406661, 22946573863
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if n<0 then 0; elif k=0 or k=n then 1; elif n=2 and k=1 then 2; elif k <= (n-1)/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; end if ; end proc; seq(add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Nov 01 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n,k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 01 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (n==2 and k==1): return 2 elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 01 2019