A026782 a(n) = T(2n,n-1), T given by A026780.
1, 7, 40, 217, 1158, 6150, 32656, 173719, 926664, 4958556, 26619438, 143365880, 774562478, 4197344582, 22810572062, 124300860689, 679081142350, 3718894341450, 20412141531664, 112276061739814, 618806031336236, 3416954495002676
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if n<0 then 0; elif k=0 or k =n then 1; elif k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; fi ; end proc: seq(T(2*n,n-1), n=1..30); # G. C. Greubel, Nov 02 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2*n, n-1], {n, 30}] (* G. C. Greubel, Nov 02 2019 *)
-
Sage
@CachedFunction def T(n, k): if (n<0): return 0 elif (k==0 or k==n): return 1 elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [T(2*n, n-1) for n in (1..30)] # G. C. Greubel, Nov 02 2019