A026784 a(n) = T(2n-1, n-1), T given by A026780.
1, 5, 24, 117, 580, 2916, 14834, 76221, 395048, 2063104, 10847078, 57373672, 305110106, 1630489090, 8751851866, 47166202181, 255128842340, 1384688987728, 7538592535170, 41159292861980, 225315261459390, 1236441650047554
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if n<0 then 0; elif k=0 or k =n then 1; elif k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; fi ; end proc: seq(T(2*n-1,n-1), n=1..30); # G. C. Greubel, Nov 02 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2*n-1, n-1], {n, 30}] (* G. C. Greubel, Nov 02 2019 *)
-
Sage
@CachedFunction def T(n, k): if (n<0): return 0 elif (k==0 or k==n): return 1 elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [T(2*n-1, n-1) for n in (1..30)] # G. C. Greubel, Nov 02 2019