A026785 a(n) = T(2n-1, n-2), T given by A026780.
1, 9, 60, 361, 2076, 11672, 64842, 357897, 1968788, 10813804, 59372770, 326086492, 1792293014, 9861375614, 54324086446, 299651439321, 1655124211372, 9154654655044, 50704627346170, 281214708137032, 1561706813618886
Offset: 2
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 2..500
Crossrefs
Programs
-
Maple
T:= proc(n,k) option remember; if n<0 then 0; elif k=0 or k =n then 1; elif k <= n/2 then procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ; else procname(n-1,k-1)+procname(n-1,k) ; fi ; end proc: seq(T(2*n-1,n-2), n=2..30); # G. C. Greubel, Nov 02 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]; Table[T[2*n-1, n-2], {n,2,30}] (* G. C. Greubel, Nov 02 2019 *)
-
Sage
@CachedFunction def T(n, k): if (n<0): return 0 elif (k==0 or k==n): return 1 elif (k<=n/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k) else: return T(n-1,k-1) + T(n-1,k) [T(2*n-1, n-2) for n in (2..30)] # G. C. Greubel, Nov 02 2019