cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026793 Juxtaposed partitions of 1,2,3,... into distinct parts, ordered by number of terms and then lexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 1, 4, 2, 3, 6, 1, 5, 2, 4, 1, 2, 3, 7, 1, 6, 2, 5, 3, 4, 1, 2, 4, 8, 1, 7, 2, 6, 3, 5, 1, 2, 5, 1, 3, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 1, 2, 6, 1, 3, 5, 2, 3, 4, 10, 1, 9, 2, 8, 3, 7, 4, 6, 1, 2, 7, 1, 3, 6, 1, 4, 5, 2, 3, 5, 1, 2, 3, 4, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 2, 8, 1, 3, 7, 1, 4, 6, 2, 3, 6, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This is the Abramowitz and Stegun ordering. - Franklin T. Adams-Watters, Apr 28 2006

Examples

			The partitions of 5 into distinct parts are [5], [1,4] and [2,3], so row 5 is 5,1,4,2,3.
Triangle begins:
[1];
[2];
[3], [1,2];
[4], [1,3];
[5], [1,4], [2,3];
[6], [1,5], [2,4], [1,2,3];
[7], [1,6], [2,5], [3,4], [1,2,4];
[8], [1,7], [2,6], [3,5], [1,2,5], [1,3,4];
[9], [1,8], [2,7], [3,6], [4,5], [1,2,6], [1,3,5], [2,3,4];
		

Crossrefs

Cf. A118457, A118458 (partition lengths), A015723 (total row lengths), A036036, A000009, A246688.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    T:= n-> map(x-> x[], sort(b(n, 1)))[]:
    seq(T(n), n=1..12);  # Alois P. Heinz, Jun 22 2020
  • Mathematica
    Array[SortBy[Map[Reverse, Select[IntegerPartitions[#], UnsameQ @@ # &]], Length] &, 12] // Flatten (* Michael De Vlieger, Jun 22 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n-i, i+1], b[n, i+1]]]];
    T[n_] := Sort[b[n, 1]];
    Array[T, 12] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)

Extensions

Incorrect program removed by Georg Fischer, Jun 22 2020