A026793 Juxtaposed partitions of 1,2,3,... into distinct parts, ordered by number of terms and then lexicographically.
1, 2, 3, 1, 2, 4, 1, 3, 5, 1, 4, 2, 3, 6, 1, 5, 2, 4, 1, 2, 3, 7, 1, 6, 2, 5, 3, 4, 1, 2, 4, 8, 1, 7, 2, 6, 3, 5, 1, 2, 5, 1, 3, 4, 9, 1, 8, 2, 7, 3, 6, 4, 5, 1, 2, 6, 1, 3, 5, 2, 3, 4, 10, 1, 9, 2, 8, 3, 7, 4, 6, 1, 2, 7, 1, 3, 6, 1, 4, 5, 2, 3, 5, 1, 2, 3, 4, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 1, 2, 8, 1, 3, 7, 1, 4, 6, 2, 3, 6, 2, 4
Offset: 1
Examples
The partitions of 5 into distinct parts are [5], [1,4] and [2,3], so row 5 is 5,1,4,2,3. Triangle begins: [1]; [2]; [3], [1,2]; [4], [1,3]; [5], [1,4], [2,3]; [6], [1,5], [2,4], [1,2,3]; [7], [1,6], [2,5], [3,4], [1,2,4]; [8], [1,7], [2,6], [3,5], [1,2,5], [1,3,4]; [9], [1,8], [2,7], [3,6], [4,5], [1,2,6], [1,3,5], [2,3,4];
Links
- Alois P. Heinz, Rows n = 1..32, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Crossrefs
Programs
-
Maple
b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [], [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]])) end: T:= n-> map(x-> x[], sort(b(n, 1)))[]: seq(T(n), n=1..12); # Alois P. Heinz, Jun 22 2020
-
Mathematica
Array[SortBy[Map[Reverse, Select[IntegerPartitions[#], UnsameQ @@ # &]], Length] &, 12] // Flatten (* Michael De Vlieger, Jun 22 2020 *) b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n-i, i+1], b[n, i+1]]]]; T[n_] := Sort[b[n, 1]]; Array[T, 12] // Flatten (* Jean-François Alcover, Jun 09 2021, after Alois P. Heinz *)
Extensions
Incorrect program removed by Georg Fischer, Jun 22 2020
Comments