cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026821 Triangular array T read by rows: T(n,k) = number of partitions of n into distinct parts, the least being k, for k=1,2,...,n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 0, 1, 5, 2, 1, 1, 0, 0, 0, 0, 0, 1, 5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 7, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 8, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

T(n,1) = A025147(n-1). Sum(k*T(n,k),k=1..n) = A092265(n). - Emeric Deutsch, Feb 24 2006

Examples

			T(11,2)=3 because we have [9,2],[6,3,2] and [5,4,2].
Triangle starts:
1;
0,1;
1,0,1;
1,0,0,1;
1,1,0,0,1;
		

Crossrefs

Programs

  • Maple
    g:=sum(t^j*x^j*product(1+x^i,i=j+1..50),j=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: seq(seq(coeff(P[n],t^j),j=1..n),n=1..14); # Emeric Deutsch, Feb 24 2006

Formula

T(n, k) = T(n-k, k+1) + ... + T(n-k, n-k) for 1<=k<=m and T(n, k)=0 for m+1<=k<=n-1, where m=[ (n-1)/2 ]; T(n, n)=1 for n >= 1.
G.f.: sum(t^j*x^j*product(1+x^i,i=j+1..infinity),j=1..infinity). - Emeric Deutsch, Feb 24 2006