A026821 Triangular array T read by rows: T(n,k) = number of partitions of n into distinct parts, the least being k, for k=1,2,...,n.
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 0, 1, 5, 2, 1, 1, 0, 0, 0, 0, 0, 1, 5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 1, 7, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 8, 4, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
T(11,2)=3 because we have [9,2],[6,3,2] and [5,4,2]. Triangle starts: 1; 0,1; 1,0,1; 1,0,0,1; 1,1,0,0,1;
Programs
-
Maple
g:=sum(t^j*x^j*product(1+x^i,i=j+1..50),j=1..50): gser:=simplify(series(g,x=0,18)): for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: seq(seq(coeff(P[n],t^j),j=1..n),n=1..14); # Emeric Deutsch, Feb 24 2006
Formula
T(n, k) = T(n-k, k+1) + ... + T(n-k, n-k) for 1<=k<=m and T(n, k)=0 for m+1<=k<=n-1, where m=[ (n-1)/2 ]; T(n, n)=1 for n >= 1.
G.f.: sum(t^j*x^j*product(1+x^i,i=j+1..infinity),j=1..infinity). - Emeric Deutsch, Feb 24 2006
Comments