cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026836 Triangular array T read by rows: T(n,k) = number of partitions of n into distinct parts, the greatest being k, for k=1,2,...,n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 3, 4, 3, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Conjecture: A199918(n) = Sum_{k=1..n} (-1)^(n-k) T(n,k). - George Beck, Jan 13 2019

Examples

			Triangle begins:
[1]
[0, 1]
[0, 1, 1]
[0, 0, 1, 1]
[0, 0, 1, 1, 1]
[0, 0, 1, 1, 1, 1]
[0, 0, 0, 2, 1, 1, 1]
[0, 0, 0, 1, 2, 1, 1, 1]
[0, 0, 0, 1, 2, 2, 1, 1, 1]
[0, 0, 0, 1, 2, 2, 2, 1, 1, 1]
[0, 0, 0, 0, 2, 3, 2, 2, 1, 1, 1]
[0, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 1]
[0, 0, 0, 0, 1, 3, 4, 3, 2, 2, 1, 1, 1]
[0, 0, 0, 0, 1, 3, 4, 4, 3, 2, 2, 1, 1, 1]
... - _N. J. A. Sloane_, Nov 09 2018
		

Crossrefs

If seen as a square array then transpose of A070936 and visible form of A053632. Central diagonal and those to the right of center are A000009 as are row sums.

Programs

  • Maple
    with(combinat);
    f2:=proc(n) local i,j,p,t0,t1,t2;
    t0:=Array(1..n,0);
    t1:=partition(n);
    p:=numbpart(n);
    for i from 1 to p do
    t2:=t1[i];
    if nops(convert(t2,set))=nops(t2) then
    # now have a partition t2 of n into distinct parts
    t0[t2[-1]]:=t0[t2[-1]]+1;
    od:
    [seq(t0[j],j=1..n)];
    end proc;
    for n from 1 to 12 do lprint(f2(n)); od: # N. J. A. Sloane, Nov 09 2018

Formula

T(n, k) = A070936(n-k, k-1) = A053632(k-1, n-k) = T(n-1, k-1)+T(n-2k+1, k-1). - Henry Bottomley, May 12 2002
T(n, k) = coefficient of x^n in x^k*Product_{i=1..k-1} (1+x^i). - Vladeta Jovovic, Aug 07 2003