A026836 Triangular array T read by rows: T(n,k) = number of partitions of n into distinct parts, the greatest being k, for k=1,2,...,n.
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 1, 1, 1, 0, 0, 0, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0, 1, 3, 4, 3, 2, 2, 1, 1
Offset: 1
Examples
Triangle begins: [1] [0, 1] [0, 1, 1] [0, 0, 1, 1] [0, 0, 1, 1, 1] [0, 0, 1, 1, 1, 1] [0, 0, 0, 2, 1, 1, 1] [0, 0, 0, 1, 2, 1, 1, 1] [0, 0, 0, 1, 2, 2, 1, 1, 1] [0, 0, 0, 1, 2, 2, 2, 1, 1, 1] [0, 0, 0, 0, 2, 3, 2, 2, 1, 1, 1] [0, 0, 0, 0, 2, 3, 3, 2, 2, 1, 1, 1] [0, 0, 0, 0, 1, 3, 4, 3, 2, 2, 1, 1, 1] [0, 0, 0, 0, 1, 3, 4, 4, 3, 2, 2, 1, 1, 1] ... - _N. J. A. Sloane_, Nov 09 2018
Links
Crossrefs
Programs
-
Maple
with(combinat); f2:=proc(n) local i,j,p,t0,t1,t2; t0:=Array(1..n,0); t1:=partition(n); p:=numbpart(n); for i from 1 to p do t2:=t1[i]; if nops(convert(t2,set))=nops(t2) then # now have a partition t2 of n into distinct parts t0[t2[-1]]:=t0[t2[-1]]+1; od: [seq(t0[j],j=1..n)]; end proc; for n from 1 to 12 do lprint(f2(n)); od: # N. J. A. Sloane, Nov 09 2018
Formula
T(n, k) = A070936(n-k, k-1) = A053632(k-1, n-k) = T(n-1, k-1)+T(n-2k+1, k-1). - Henry Bottomley, May 12 2002
T(n, k) = coefficient of x^n in x^k*Product_{i=1..k-1} (1+x^i). - Vladeta Jovovic, Aug 07 2003
Comments