A026837 Number of partitions of n into distinct parts, the greatest being odd.
1, 0, 1, 1, 2, 2, 2, 3, 4, 5, 6, 8, 9, 11, 13, 16, 19, 23, 27, 32, 38, 45, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 556, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2049, 2291, 2560, 2859
Offset: 1
Keywords
Examples
a(9)=4 because we have [9],[7,2],[5,4] and [5,3,1].
Links
- I. Pak, On Fine's partition theorems, Dyson, Andrews and missed opportunities, Math. Intelligencer, 25 (No. 1, 2003), 10-16.
Programs
-
Maple
g:=sum(x^(2*k-1)*product(1+x^j,j=1..2*k-2),k=1..40): gser:=series(g,x=0,60): seq(coeff(g,x,n),n=1..54); # Emeric Deutsch, Apr 04 2006
-
Mathematica
Table[Count[IntegerPartitions[n],?(Length[#]==Length[Union[#]] && OddQ[ First[#]]&)],{n,60}] (* _Harvey P. Dale, Jun 28 2014 *)
Formula
G.f.: sum(k>=1, x^(2k-1) * prod(j=1..2k-2, 1+x^j ) ). - Emeric Deutsch, Apr 04 2006
a(2*n) = A118302(2*n), a(2*n-1) = A118301(2*n-1); a(n) = A000009(n) - A026838(n). - Reinhard Zumkeller, Apr 22 2006
Comments