cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026844 a(n) = T(2n,n+4), T given by A026725.

Original entry on oeis.org

1, 10, 67, 379, 1958, 9576, 45190, 208084, 941480, 4204949, 18597694, 81635060, 356220369, 1547066801, 6693361973, 28868868733, 124194904215, 533156609953, 2284722747583, 9776008778375, 41777089615201, 178338353574365, 760586650190997
Offset: 4

Views

Author

Keywords

Comments

Column k=9 of triangle A236830. - Philippe Deléham, Feb 02 2014

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-Sqrt(1-4*x))^3)) )); // G. C. Greubel, Jul 19 2019
    
  • Mathematica
    Drop[CoefficientList[Series[(1-Sqrt[1-4x])^9/(64*x^3*(8*x^2-(1-Sqrt[1-4x])^3)), {x,0,40}], x], 4] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    a=((1-sqrt(1-4*x))^9/(64*x^3*(8*x^2 -(1-sqrt(1-4*x))^3)) ).series(x, 45).coefficients(x, sparse=False); a[4:40] # G. C. Greubel, Jul 19 2019

Formula

G.f.: (x^4*C(x)^9)/(1-x*C(x)^3) where C(x) is the g.f. of A000108. - Philippe Deléham, Feb 02 2014
a(n) ~ phi^(3*n-5) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019
(7719*n+49402)*(n+3)*a(n) +(7719*n^2-1057949*n-1942990)*a(n-1) +4*(-211672*n^2+2076533*n+763807)*a(n-2) +(4326581*n^2-34087269*n+38502298)*a(n-3) +3*(-1940897*n^2+16395555*n-37085206)*a(n-4) -2*(406705*n-1575734)*(2*n-9)*a(n-5)=0. - R. J. Mathar, Oct 26 2019