cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A108080 a(n) = Sum_{i=0..n} binomial(2*n+i,n-i).

Original entry on oeis.org

1, 3, 12, 50, 211, 895, 3805, 16193, 68940, 293526, 1249622, 5318976, 22634700, 96296410, 409573584, 1741574006, 7403616923, 31466106703, 133704121665, 568008916093, 2412570019447, 10245302874071, 43500597657111, 184670002546295, 783850164628721, 3326671128027805, 14116630429874265
Offset: 0

Views

Author

Ralf Stephan, Jun 03 2005

Keywords

Comments

Apparently a bisection of A026847.
Row sums of A159965. - Paul Barry, Apr 28 2009

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x/(x*Sqrt[1-4*x]-(1-2*x-(1-3*x)*(1-Sqrt[1-4*x])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    x='x+O('x^66); Vec(x/(x*sqrt(1-4*x)-(1-2*x-(1-3*x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 15 2013

Formula

From Paul Barry, Apr 28 2009: (Start)
G.f.: x/(x*sqrt(1-4x)-(1-2x-(1-3x)*c(x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n+k,j-k)*C(n,j). (End)
From Paul Barry, Sep 07 2009: (Start)
G.f.: (1/sqrt(1-4x))*(1/(1-xc(x)^3)), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(2n,n-k)*F(k+1) = Sum_{k=0..n} C(2n,k)*F(n-k+1).
a(n) = Sum_{k=0..n} C(2k,k) * A165201(n-k). (End)
From Vaclav Kotesovec, Oct 24 2012: (Start)
Recurrence: n*(17*n-93)*a(n) = 4*(34*n^2 - 189*n + 98)*a(n-1) - 5*(51*n^2 - 271*n + 252)*a(n-2) - 4*(17*n^2 - 184*n + 406)*a(n-3) + 44*(2*n-7) * a(n-4).
a(n) ~ 1/2*(1+1/sqrt(5))*(sqrt(5)+2)^n. (End)
a(n) = binomial(2*n, n)*hypergeom([1, -n, 1+2*n], [(1+n)/2, 1+n/2], -1/4). - Stefano Spezia, Jun 17 2025
Showing 1-1 of 1 results.