cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026908 a(n) = A026907(2*n, n).

Original entry on oeis.org

1, 44, 198, 758, 2824, 10530, 39516, 149274, 567120, 2164898, 8297206, 31907214, 123053938, 475753142, 1843357752, 7155936162, 27826486272, 108369397602, 422614721742, 1650118887102, 6450143419962, 25238550057222
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A026908:= func< n | (n+1)*Catalan(n) +3*(n+3)*Catalan(n+2) -18 >;
    [A026908(n): n in [0..40]]; // G. C. Greubel, Aug 22 2025
    
  • Mathematica
    With[{b=Binomial}, Table[b[2*n,n] +3*b[2*n+4,n+2] -18, {n,0,40}]] (* G. C. Greubel, Aug 22 2025 *)
  • SageMath
    def A026908(n): return binomial(2*n,n) +3*binomial(2*n+4,n+2) -18
    print([A026908(n) for n in range(41)]) # G. C. Greubel, Aug 22 2025

Formula

a(n) = 4^n*Gamma(n+1/2)*(38 + 99*n + 49*n^2)*Pi^(-1/2)/Gamma(n+3) - 18 (based on guessed recurrence) - Mark van Hoeij, Oct 30 2011
From G. C. Greubel, Aug 22 2025: (Start)
a(n) = binomial(2*n, n) + 3*binomial(2*n+4, n+2) - 18.
a(n) = (n+2)*A000108(n) + 3*(n+3)*A000108(n+2) - 18.
G.f.: 2*(7 + 45*x + 2*x^2 - (5 - 23*x)*sqrt(1-4*x))/((1-x)*sqrt(1-4*x)*(1 + sqrt(1 - 4*x))^2).
E.g.f.: (1/x)*exp(2*x)*( 25*x*BesselI(0, 2*x) - 6*(1-4*x)*BesselI(1, 2*x) ) - 18*exp(x). (End)