cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026910 a(n) = A026907(2*n, n-1).

Original entry on oeis.org

28, 154, 627, 2414, 9201, 35094, 134259, 515302, 1983678, 7656374, 29619728, 114822606, 445925707, 1734610302, 6757306947, 26358212502, 102937963242, 402444721782, 1574952822852, 6169131608622, 24184904949252, 94885715007390, 372536351222832, 1463611239163614, 5753766284232606, 22632379126906174, 89072478723401106
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A026910:= func< n | n*Catalan(n) +3*(n+2)*Catalan(n+2) -18 >;
    [A026910(n): n in [1..40]]; // G. C. Greubel, Aug 22 2025
    
  • Mathematica
    Table[n*CatalanNumber[n] +3*(n+2)*CatalanNumber[n+2] -18, {n,40}] (* G. C. Greubel, Aug 22 2025 *)
  • SageMath
    def A026910(n): return binomial(2*n,n-1) +3*binomial(2*n+4,n+1) -18
    print([A026910(n) for n in range(1,41)]) # G. C. Greubel, Aug 22 2025

Formula

From G. C. Greubel, Aug 22 2025: (Start)
a(n) = n*A000108(n) + 3*(n+2)*A000108(n+2) - 18.
a(n) = binomial(2*n, n-1) + 3*binomial(2*n+4, n+1) - 18.
G.f.: (3 - 9*x + 7*x^2 - 3*x^3 + 2*x^4 - (3 - 3*x + 7*x^2 + 17*x^3 + 12*x^4)*sqrt(1-4*x))/( 2*(1-x)*x^3*sqrt(1-4*x) ).
E.g.f.: 6 - 18*exp(x) - (1/x^2)*exp(2*x)*( 6*x(1-4*x)*BesselI(0, 2*x) - (6 - 12*x + 25*x^2)*BesselI(1, 2*x) ). (End)

Extensions

More terms added by G. C. Greubel, Aug 22 2025