cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026911 a(n) = A026907(2*n, n-2).

Original entry on oeis.org

67, 348, 1495, 6108, 24501, 97456, 385900, 1524066, 6009720, 23675882, 93226503, 367005692, 1444728537, 5687662392, 22395051912, 88199397642, 347448657492, 1369107075762, 5396498311992, 21277355051610, 83918011194996, 331073286677058, 1306540603377930, 5157617675058838, 20365730134359298, 80440031466243942
Offset: 2

Views

Author

Keywords

Crossrefs

Cf. A026907.

Programs

  • Magma
    A026911:= func< n | Binomial(2*n,n-2) +3*Binomial(2*n+4,n) -18 >;
    [A026911(n): n in [2..45]]; // G. C. Greubel, Aug 23 2025
    
  • Mathematica
    Table[Binomial[2*n,n-2] +3*Binomial[2*n+4,n] -18, {n,2,45}] (* G. C. Greubel, Aug 23 2025 *)
  • SageMath
    def A026911(n): return binomial(2*n,n-2) +3*binomial(2*n+4,n) -18
    print([A026911(n) for n in range(2,46)]) # G. C. Greubel, Aug 23 2025

Formula

From G. C. Greubel, Aug 23 2025: (Start)
a(n) = binomial(2*n, n-2) + 3*binomial(2*n+4, n) - 18.
G.f.: (3 - 15*x + 19*x^2 - 11*x^3 + 6*x^4 - 2*x^5 - (3 - 9*x + 7*x^2 - 3*x^3 + 8*x^4 + 30*x^5)*sqrt(1-4*x))/(2*(1-x)*x^4*sqrt(1-4*x)).
E.g.f.: 15 - 18*exp(x) + (1/x^3)*exp(2*x)*(6*x*(3 - 4*x + 4*x^2)*BesselI(0, 2*x) - 6*(3 - 4*x + 5*x^2 - 4*x^3)*BesselI(1, 2*x) + x^3*BesselI(2, 2*x) ). (End)

Extensions

More terms added by G. C. Greubel, Aug 23 2025