A026920 Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the greatest being k.
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 0, 2, 2, 3, 1, 1, 0, 1, 1, 2, 4, 3, 3, 1, 1, 0, 1, 0, 3, 3, 5, 3, 3, 1, 1, 0, 1, 1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1, 0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1, 1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1, 0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1
Offset: 1
Examples
G.f. = (0)*q^0 + (1) * q^1 (0* + 1*z^1) * q^2 (1* + 0*z^1 + 1*z^2) * q^3 (0* + 1*z^1 + 0*z^2 + 1*z^3) * q^4 (1* + 1*z^1 + 1*z^2 + 0*z^3 + 1*z^4) * q^5 (0* + 2*z^1 + 1*z^2 + 1*z^3 + 0*z^4 + 1*z^5) * q^6 (1* + 1*z^1 + 3*z^2 + 1*z^3 + 1*z^4 + 0*z^5 + 1*z^6) * q^7 ... [_Joerg Arndt_, May 12 2013] Triangle starts: 01: [1] 02: [0, 1] 03: [1, 0, 1] 04: [0, 1, 0, 1] 05: [1, 1, 1, 0, 1] 06: [0, 2, 1, 1, 0, 1] 07: [1, 1, 3, 1, 1, 0, 1] 08: [0, 2, 2, 3, 1, 1, 0, 1] 09: [1, 2, 4, 3, 3, 1, 1, 0, 1] 10: [0, 3, 3, 5, 3, 3, 1, 1, 0, 1] 11: [1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1] 12: [0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1] 13: [1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1] 14: [0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1] 15: [1, 3, 11, 13, 16, 12, 12, 7, 6, 3, 3, 1, 1, 0, 1] 16: [0, 4, 9, 18, 17, 18, 13, 12, 7, 6, 3, 3, 1, 1, 0, 1] 17: [1, 4, 13, 19, 25, 21, 20, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1] 18: [0, 5, 12, 24, 27, 30, 23, 21, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1] 19: [1, 4, 17, 26, 37, 34, 34, 25, 22, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1] ... [_Joerg Arndt_, May 12 2013]
Crossrefs
Programs
-
PARI
N = 20; q = 'q + O('q^N); gf = sum(n=0,N, q^(2*n+1)/prod(k=1, 2*n+1, 1-'z*q^k) ); v = Vec(gf); { for(n=1, #v, /* print triangle starting with row 1: */ p = Pol('c0 +'cn*'z^n + v[n],'z); p = polrecip(p); p = Vec(p); p[1] -= 'c0; p = vector(#p-1, j, p[j]); print(p); ); } /* Joerg Arndt, May 12 2013 */
Formula
G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..2*n+1, 1-z*q^k) ), setting z=1 gives g.f. for A027193. [Joerg Arndt, May 12 2013]
Comments