cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A026923 Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 2, 4, 3, 6, 5, 8, 7, 11, 9, 13, 12, 17, 15, 20, 18, 24, 22, 28, 26, 33, 30, 37, 35, 43, 40, 48, 45, 54, 51, 60, 57, 67, 63, 73, 70, 81, 77, 88, 84, 96, 92, 104, 100, 113, 108, 121, 117, 131
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      1      1      3      2      4      3      ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 06 2019
		

Crossrefs

Programs

  • Maple
    A026923 := proc(n)
        local a,p1,p2,p3 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                p3 := (n-p1-2*p2)/3 ;
                if type(p3,'integer') and p3 >=1 and type(p1+p2+p3,'odd') then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026927(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^3*(1 - x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)

A026921 Triangular array E by rows: E(n,k) = number of partitions of n into an even number of parts, the greatest being k.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 0, 2, 1, 2, 1, 1, 0, 1, 2, 3, 2, 2, 1, 1, 0, 0, 2, 3, 3, 2, 2, 1, 1, 0, 1, 2, 5, 4, 4, 2, 2, 1, 1, 0, 0, 3, 4, 6, 4, 4, 2, 2, 1, 1, 0, 1, 3, 7, 7, 7, 5, 4, 2, 2, 1, 1, 0, 0, 3, 6, 10, 8, 7, 5, 4, 2, 2, 1, 1, 0, 1, 3, 9, 11, 13, 9, 8, 5, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Keywords

Comments

The reversed rows (see example) stabilize to A027193. [Joerg Arndt, May 12 2013]

Examples

			G.f. = (1)*q^0 +
(0) * q^1 +
(1 + 0*z) * q^2 +
(0 + 1*z + 0*z^2) * q^3 +
(1 + 1*z + 1*z^2 + 0*z^3) * q^4 +
(0 + 1*z + 1*z^2 + 1*z^3 + 0*z^4) * q^5 +
(1 + 1*z + 2*z^2 + 1*z^3 + 1*z^4 + 0*z^5) * q^6 +
(0 + 2*z + 1*z^2 + 2*z^3 + 1*z^4 + 1*z^5 + 0*z^6) * q^7 +
... [_Joerg Arndt_, May 12 2013]
Triangle starts:
01: [0]
02: [1, 0]
03: [0, 1, 0]
04: [1, 1, 1, 0]
05: [0, 1, 1, 1, 0]
06: [1, 1, 2, 1, 1, 0]
07: [0, 2, 1, 2, 1, 1, 0]
08: [1, 2, 3, 2, 2, 1, 1, 0]
09: [0, 2, 3, 3, 2, 2, 1, 1, 0]
10: [1, 2, 5, 4, 4, 2, 2, 1, 1, 0]
11: [0, 3, 4, 6, 4, 4, 2, 2, 1, 1, 0]
12: [1, 3, 7, 7, 7, 5, 4, 2, 2, 1, 1, 0]
13: [0, 3, 6, 10, 8, 7, 5, 4, 2, 2, 1, 1, 0]
14: [1, 3, 9, 11, 13, 9, 8, 5, 4, 2, 2, 1, 1, 0]
15: [0, 4, 8, 14, 14, 14, 9, 8, 5, 4, 2, 2, 1, 1, 0]
16: [1, 4, 12, 16, 20, 17, 15, 10, 8, 5, 4, 2, 2, 1, 1, 0]
17: [0, 4, 11, 20, 22, 23, 18, 15, 10, 8, 5, 4, 2, 2, 1, 1, 0]
18: [1, 4, 15, 23, 30, 28, 26, 19, 16, 10, 8, 5, 4, 2, 2, 1, 1, 0]
19: [0, 5, 13, 28, 33, 37, 31, 27, 19, 16, 10, 8, 5, 4, 2, 2, 1, 1, 0]
20: [1, 5, 18, 31, 44, 44, 43, 34, 28, 20, 16, 10, 8, 5, 4, 2, 2, 1, 1, 0]
... [_Joerg Arndt_, May 12 2013]
		

Crossrefs

E(n, k) = O(n-k, 1)+O(n-k, 2)+...+O(n-k, m), where m=MIN{k, n-k}, n >= 2, O given by A026920.
Columns k=3..6: A026927, A026928, A026929, A026930.

Programs

  • PARI
    N = 20;  q = 'q + O('q^N);
    gf = sum(n=0,N, q^(2*n)/prod(k=1, 2*n, 1-'z*q^k) );
    v = Vec(gf);
    { for(n=2, #v, /* print triangle starting with row 1: */
        p = Pol('c0 +'cn*'z^n + v[n],'z);
        p = polrecip(p);
        p = Vec(p);
        p[1] -= 'c0;
        p = vector(#p-2, j, p[j]);
        print(p);
    ); }
    /* Joerg Arndt, May 12 2013 */

Formula

G.f. (including term a(0)=1): sum(n>=0, q^(2*n)/prod(k=1..2*n, 1-z*q^k) ), set z=1 to obtain g.f. for A027187. [Joerg Arndt, May 12 2013]
A026920(n,k) + E(n,k) = A008284(n,k). - R. J. Mathar, Aug 23 2019

A026922 Number of partitions of n into an odd number of parts, the greatest being 2; also, a(n+3) = number of partitions of n+1 into an even number of parts, each <=2.

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17, 16, 17, 17, 18, 17, 18, 18, 19, 18, 19, 19, 20, 19, 20, 20, 21
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the number of partitions of n into two parts, the larger being odd (the conjugate of the defining partition). Example: a(10) = 3 because we have 55, 73 and 91. - Emeric Deutsch, Nov 12 2008

Examples

			a(10)=3 because we have 22222, 2221111 and 211111111. - _Emeric Deutsch_, Nov 12 2008
		

Crossrefs

Column 2 of A026920. Essentially the same as A008624.

Programs

  • Maple
    G:=x^2*(x^2-x+1)/((x+1)*(1-x)^2*(x^2+1)): Gser:= series(G,x=0,105): seq(coeff(Gser,x,n), n=1..82); # Emeric Deutsch, Nov 12 2008
    a := proc(n): if (n mod 4 = 3) then floor((n+2)/4) - 1 else floor((n+2)/4) fi: end: seq(a(n), n=1..82); # Johannes W. Meijer, Oct 10 2013
  • Mathematica
    CoefficientList[Series[x (1 - x + x^2) / (1 - x - x^4 + x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 15 2013 *)
  • PARI
    {a(n) = n \ 2 - ((n + 1) \ 4)} /* Michael Somos, Oct 14 2008 */

Formula

a(2*n + 1) = a(2*n - 2) = A004526(n).
a(n) = floor((n+2)/4) - [n == 3 mod 4] = floor((1/8)*{2*n - 1 + 3*(-1)^n + 2*(-1)^[(n-1)/2]}). - Ralf Stephan, Jun 09 2005
a(n) = A008624(n-2). - R. J. Mathar, Oct 23 2008
From Emeric Deutsch, Nov 12 2008: (Start)
G.f. = sum(sum(x^(2*i-1+j), j=1..2*i-1), i=1..infinity).
G.f. = x^2*(1-x+x^2)/[(1+x)*(1-x)^2*(1+x^2)]. (End)
From Michael Somos, Oct 14 2008: (Start)
Euler transform of length 6 sequence [ 0, 1, 1, 1, 0, -1].
a(n) = a(n-1) + a(n-4) - a(n-5). a(1 - n) = -a(n).
G.f.: x^2 * (1 - x + x^2) / (1 - x - x^4 + x^5). (End)

Extensions

More terms from Emeric Deutsch, Nov 12 2008

A026924 Number of partitions of n into an odd number of parts, the greatest being 4; also, a(n+7) = number of partitions of n+3 into an even number of parts, each <=4.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 3, 5, 5, 8, 8, 12, 13, 18, 19, 24, 26, 33, 35, 43, 46, 55, 59, 69, 74, 86, 91, 104, 111, 126, 134, 150, 159, 177, 187, 207, 219, 241, 254, 277, 292, 318, 334, 362, 380, 410, 430, 462, 484, 519, 542, 579, 605
Offset: 1

Views

Author

Keywords

Crossrefs

4th column of A026920.

Programs

  • Maple
    A026924 := proc(n)
        local a,p1,p2,p3,p4 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                for p3 from op(1+modp(n-p1-2*p2,4),[0,3,2,1]) to (n-p1-2*p2)/3 by 4 do
                    p4 := (n-p1-2*p2-3*p3)/4 ;
                    if type(p4,'integer') and p4 >=1 and type(p1+p2+p3+p4,'odd') then
                        a := a+1 ;
                    end if:
                end do:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026928(n) = A026810(n). - R. J. Mathar, Aug 22 2019

A026926 Number of partitions of n into an odd number of parts, the greatest being 6; also, a(n+11) = number of partitions of n+5 into an even number of parts, each <=6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 6, 7, 11, 12, 18, 21, 30, 34, 46, 54, 70, 80, 101, 116, 143, 163, 197, 225, 269, 303, 357, 403, 469, 525, 606, 677, 774, 860, 976, 1082, 1221, 1346, 1509, 1661, 1852, 2029, 2252, 2462, 2720, 2964, 3261
Offset: 1

Views

Author

Keywords

Crossrefs

6th column of A026920.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#[[1]]==6&&OddQ[Length[#]]&]],{n,60}] (* Harvey P. Dale, Dec 31 2022 *)

A026931 Triangular array T read by rows: T(n,k) = number of partitions of n into an odd number of parts, each <= k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 3, 3, 4, 0, 2, 3, 4, 4, 5, 1, 2, 5, 6, 7, 7, 8, 0, 2, 4, 7, 8, 9, 9, 10, 1, 3, 7, 10, 13, 14, 15, 15, 16, 0, 3, 6, 11, 14, 17, 18, 19, 19, 20, 1, 3, 9, 14, 20, 23, 26, 27, 28, 28, 29, 0, 3, 8, 16, 22, 28, 31, 34, 35, 36
Offset: 1

Views

Author

Keywords

Formula

T(n, k) = Sum_{i=1..k} A026920(n, i).
Showing 1-6 of 6 results.