cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A026927 Number of partitions of n into an even number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an odd number of parts, each <= 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 1, 3, 3, 5, 4, 7, 6, 9, 8, 12, 11, 15, 13, 18, 17, 22, 20, 26, 24, 30, 28, 35, 33, 40, 37, 45, 43, 51, 48, 57, 54, 63, 60, 70, 67, 77, 73, 84, 81, 92, 88, 100, 96, 108, 104, 117
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      1      1      2      1      3      3      5      ...
-----------------------------------------------------------------------
		

Crossrefs

Formula

a(n) + A026923(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^4*(1 + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)

A026920 Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the greatest being k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 1, 3, 1, 1, 0, 1, 0, 2, 2, 3, 1, 1, 0, 1, 1, 2, 4, 3, 3, 1, 1, 0, 1, 0, 3, 3, 5, 3, 3, 1, 1, 0, 1, 1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1, 0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1, 1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1, 0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The reversed rows (see example) stabilize to A027187. [Joerg Arndt, May 12 2013]

Examples

			G.f. = (0)*q^0 +
(1) * q^1
(0* + 1*z^1) * q^2
(1* + 0*z^1 + 1*z^2) * q^3
(0* + 1*z^1 + 0*z^2 + 1*z^3) * q^4
(1* + 1*z^1 + 1*z^2 + 0*z^3 + 1*z^4) * q^5
(0* + 2*z^1 + 1*z^2 + 1*z^3 + 0*z^4 + 1*z^5) * q^6
(1* + 1*z^1 + 3*z^2 + 1*z^3 + 1*z^4 + 0*z^5 + 1*z^6) * q^7
... [_Joerg Arndt_, May 12 2013]
Triangle starts:
01: [1]
02: [0, 1]
03: [1, 0, 1]
04: [0, 1, 0, 1]
05: [1, 1, 1, 0, 1]
06: [0, 2, 1, 1, 0, 1]
07: [1, 1, 3, 1, 1, 0, 1]
08: [0, 2, 2, 3, 1, 1, 0, 1]
09: [1, 2, 4, 3, 3, 1, 1, 0, 1]
10: [0, 3, 3, 5, 3, 3, 1, 1, 0, 1]
11: [1, 2, 6, 5, 6, 3, 3, 1, 1, 0, 1]
12: [0, 3, 5, 8, 6, 6, 3, 3, 1, 1, 0, 1]
13: [1, 3, 8, 8, 10, 7, 6, 3, 3, 1, 1, 0, 1]
14: [0, 4, 7, 12, 10, 11, 7, 6, 3, 3, 1, 1, 0, 1]
15: [1, 3, 11, 13, 16, 12, 12, 7, 6, 3, 3, 1, 1, 0, 1]
16: [0, 4, 9, 18, 17, 18, 13, 12, 7, 6, 3, 3, 1, 1, 0, 1]
17: [1, 4, 13, 19, 25, 21, 20, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
18: [0, 5, 12, 24, 27, 30, 23, 21, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
19: [1, 4, 17, 26, 37, 34, 34, 25, 22, 14, 12, 7, 6, 3, 3, 1, 1, 0, 1]
... [_Joerg Arndt_, May 12 2013]
		

Crossrefs

O(n, k) = E(n-k, 1)+E(n-k, 2)+...+E(n-k, m), where m=MIN{k, n-k}, n >= 2, E given by A026921.
Columns k=2..6: A026922, A026923, A026924, A026925, A026926.

Programs

  • PARI
    N = 20;  q = 'q + O('q^N);
    gf = sum(n=0,N, q^(2*n+1)/prod(k=1, 2*n+1, 1-'z*q^k) );
    v = Vec(gf);
    { for(n=1, #v, /* print triangle starting with row 1: */
        p = Pol('c0 +'cn*'z^n + v[n],'z);
        p = polrecip(p);
        p = Vec(p);
        p[1] -= 'c0;
        p = vector(#p-1, j, p[j]);
        print(p);
    ); }
    /* Joerg Arndt, May 12 2013 */

Formula

G.f.: sum(n>=0, q^(2*n+1)/prod(k=1..2*n+1, 1-z*q^k) ), setting z=1 gives g.f. for A027193. [Joerg Arndt, May 12 2013]
O(n,k) + A026921(n,k) = A008284(n,k). - R. J. Mathar, Aug 23 2019

A026928 Number of partitions of n into an even number of parts, the greatest being 4; also, a(n+7) = number of partitions of n+3 into an odd number of parts, each <=4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 14, 16, 20, 23, 28, 31, 37, 41, 48, 53, 61, 67, 76, 83, 94, 102, 114, 123, 136, 147, 162, 174, 191, 204, 222, 237, 257, 274, 296, 314, 338, 358, 384, 406, 434, 458, 488, 514
Offset: 1

Views

Author

Keywords

Crossrefs

4th column of A026921.

A026929 Number of partitions of n into an even number of parts, the greatest being 5; also, a(n+9) = number of partitions of n+4 into an odd number of parts, each <=5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 14, 20, 22, 30, 33, 44, 48, 62, 68, 85, 93, 114, 124, 149, 162, 193, 209, 245, 265, 307, 331, 380, 409, 466, 500, 565, 605, 679, 726, 810, 864, 959, 1021, 1127, 1198, 1317, 1397, 1529, 1620, 1767
Offset: 1

Views

Author

Keywords

Crossrefs

5th column of A026921.

A026930 Number of partitions of n into an even number of parts, the greatest being 6; also, a(n+11) = number of partitions of n+5 into an odd number of parts, each <=6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 7, 9, 14, 17, 23, 28, 37, 44, 56, 66, 83, 98, 119, 139, 168, 194, 229, 263, 309, 352, 408, 462, 532, 600, 683, 766, 869, 969, 1090, 1211, 1356, 1500, 1670, 1840, 2041, 2242, 2473, 2707, 2978, 3249
Offset: 1

Views

Author

Keywords

Crossrefs

6th column of A026921.

Programs

A026932 Triangular array T read by rows: T(n,k) = number of partitions of n into an even number of parts, each <= k.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 2, 3, 3, 0, 1, 2, 3, 3, 1, 2, 4, 5, 6, 6, 0, 2, 3, 5, 6, 7, 7, 1, 3, 6, 8, 10, 11, 12, 12, 0, 2, 5, 8, 10, 12, 13, 14, 14, 1, 3, 8, 12, 16, 18, 20, 21, 22, 22, 0, 3, 7, 13, 17, 21, 23, 25, 26, 27, 27, 1, 4, 11, 18, 25, 30, 34, 36, 38
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A026921.

Formula

T(n, k) = Sum_{i=1..k} A026921(n, i).
Showing 1-6 of 6 results.