cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A026923 Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 2, 4, 3, 6, 5, 8, 7, 11, 9, 13, 12, 17, 15, 20, 18, 24, 22, 28, 26, 33, 30, 37, 35, 43, 40, 48, 45, 54, 51, 60, 57, 67, 63, 73, 70, 81, 77, 88, 84, 96, 92, 104, 100, 113, 108, 121, 117, 131
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      1      1      3      2      4      3      ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 06 2019
		

Crossrefs

Programs

  • Maple
    A026923 := proc(n)
        local a,p1,p2,p3 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                p3 := (n-p1-2*p2)/3 ;
                if type(p3,'integer') and p3 >=1 and type(p1+p2+p3,'odd') then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026927(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^3*(1 - x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)

A309684 Sum of the odd parts appearing among the smallest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 15, 15, 24, 24, 33, 33, 42, 42, 58, 58, 74, 74, 90, 90, 115, 115, 140, 140, 165, 165, 201, 201, 237, 237, 273, 273, 322, 322, 371, 371, 420, 420, 484, 484, 548, 548, 612, 612, 693, 693, 774, 774, 855, 855, 955, 955
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      2      2      3      3      7      7      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[j*Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, 1, -1, 0, 0, 2, -2, -2, 2, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 15, 15}, 20] (* Wesley Ivan Hurt, Aug 29 2019 *)
  • PARI
    a(n) = sum(j = 1, floor(n/3), sum(i = j, floor((n-j)/2), j * (j%2))); \\ Jinyuan Wang, Aug 29 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * (j mod 2).
From Colin Barker, Aug 22 2019: (Start)
G.f.: x^3*(1 + x^2)*(1 - x^2 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-6) - 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-12) + a(n-13) + a(n-14) - a(n-15) for n > 14.
(End)
a(n) = (-4*s^3+(2*t-7)*s^2+(4*t-1)*s+2*t+2)/2, where s = floor((n-3)/6) and t = floor((n-3)/2). - Wesley Ivan Hurt, Oct 27 2021

A309689 Number of even parts appearing among the second largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 38, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 80, 84, 88, 92, 96, 100, 104, 108, 112, 117, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      1      2      2      2      3      4      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Mod[i - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{2, -2, 2, -1, 0, 1, -2, 2, -2, 1}, {0, 0, 0, 0, 0, 1, 2, 2, 2, 3}, 80]
  • PARI
    concat([0,0,0,0,0], Vec(x^5 / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((i-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^5 / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) for n>9.
(End)
a(n) = (6*n^2+48*cos(n*Pi/3)-36*cos(n*Pi/2)+16*cos(2*n*Pi/3)-3*(-1)^n-25)/144. - Ilya Gutkovskiy, Oct 29 2021

A309690 Sum of the even parts appearing among the second largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 16, 20, 26, 32, 38, 44, 58, 72, 80, 88, 106, 124, 142, 160, 182, 204, 226, 248, 284, 320, 346, 372, 414, 456, 498, 540, 588, 636, 684, 732, 800, 868, 922, 976, 1052, 1128, 1204, 1280, 1364, 1448, 1532, 1616, 1726, 1836, 1928
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      2      4      4      4      8     12      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[i * Mod[i - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 16, 20, 26, 32, 38, 44, 58}, 80]
  • PARI
    concat([0,0,0,0,0], Vec(2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^60))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * ((i-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: 2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17.
(End)

A309692 Sum of the odd parts appearing among the largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 3, 11, 8, 20, 17, 38, 33, 60, 55, 95, 83, 131, 124, 189, 173, 248, 232, 328, 308, 416, 396, 529, 496, 643, 619, 795, 756, 948, 909, 1134, 1089, 1332, 1287, 1567, 1503, 1803, 1752, 2093, 2021, 2384, 2312, 2720, 2640, 3072, 2992, 3473, 3368
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      3      3     11      8     20     17      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[ (n - i - j) * Mod[n - i - j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 1, 0, 3, 3, 11, 8, 20, 17, 38, 33, 60, 55, 95, 83, 131, 124}, 80]
    Table[Total[Select[IntegerPartitions[n,{3}][[;;,1]],OddQ]],{n,0,60}] (* Harvey P. Dale, Oct 13 2023 *)
  • PARI
    concat([0,0,0], Vec(x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)

A309694 Sum of the even parts appearing among the largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 6, 4, 14, 14, 28, 24, 48, 44, 74, 68, 112, 106, 158, 144, 214, 206, 286, 268, 370, 352, 466, 444, 584, 562, 716, 680, 864, 838, 1038, 996, 1230, 1188, 1440, 1392, 1682, 1634, 1944, 1876, 2228, 2174, 2548, 2472, 2892, 2816, 3260, 3176, 3670
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      2      2      6      4     14     14     28      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(n - i - j) * Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 0, 2, 2, 6, 4, 14, 14, 28, 24, 48, 44, 74, 68, 112, 106, 158}, 80]
  • PARI
    concat([0,0,0,0], Vec(2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: 2*x^4*(1 + 3*x^2 - x^3 + 6*x^4 - x^5 + 7*x^6 - x^7 + 6*x^8 - x^9 + 3*x^10 - x^11 + x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)

A309683 Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165, 165, 176
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      2      2      3      3      5      5      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* Wesley Ivan Hurt, Aug 28 2019 *)

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).
From Colin Barker, Aug 22 2019: (Start)
G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)

A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 35, 35, 40, 40, 45, 45, 51, 51, 57, 57, 63, 63, 70, 70, 77, 77, 84, 84, 92, 92, 100, 100, 108, 108, 117, 117, 126, 126, 135, 135, 145, 145, 155, 155, 165
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      0      1      1      2      2      3      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* Wesley Ivan Hurt, Aug 30 2019 *)

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
a(n) = A001840(floor((n-4)/2)) for n>=2. - Joerg Arndt, Aug 23 2019

A309686 Sum of the even parts appearing among the smallest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 2, 4, 4, 6, 6, 12, 12, 18, 18, 24, 24, 36, 36, 48, 48, 60, 60, 80, 80, 100, 100, 120, 120, 150, 150, 180, 180, 210, 210, 252, 252, 294, 294, 336, 336, 392, 392, 448, 448, 504, 504, 576, 576, 648, 648, 720, 720, 810, 810, 900, 900, 990
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     0      0      0      2      2      4      4      6      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[j*Mod[j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, 1, -1, 0, 0, 2, -2, -2, 2, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 2, 2, 4, 4, 6, 6, 12, 12, 18}, 80]

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * ((j-1) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: 2*x^6 / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-6) - 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-12) + a(n-13) + a(n-14) - a(n-15) for n>14.
(End)

A309687 Number of odd parts appearing among the second largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 26, 28, 31, 33, 35, 37, 40, 43, 46, 48, 51, 54, 57, 60, 64, 67, 70, 73, 77, 81, 85, 88, 92, 96, 100, 104, 109, 113, 117, 121, 126, 131, 136, 140, 145, 150, 155, 160, 166
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      1      1      1      2      3      4      4      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Mod[i, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{2, -2, 2, -1, 0, 1, -2, 2, -2, 1}, {0, 0, 0, 1, 1, 1, 1, 2, 3, 4}, 80]
  • PARI
    a(n) = sum(j=1, n\3, sum(i=j, (n-j)\2, i % 2)); \\ Michel Marcus, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^3*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) for n>9.
(End)
Showing 1-10 of 12 results. Next