cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A026923 Number of partitions of n into an odd number of parts, the greatest being 3; also, a(n+5) = number of partitions of n+2 into an even number of parts, each <= 3.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 2, 4, 3, 6, 5, 8, 7, 11, 9, 13, 12, 17, 15, 20, 18, 24, 22, 28, 26, 33, 30, 37, 35, 43, 40, 48, 45, 54, 51, 60, 57, 67, 63, 73, 70, 81, 77, 88, 84, 96, 92, 104, 100, 113, 108, 121, 117, 131
Offset: 1

Views

Author

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      1      1      3      2      4      3      ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 06 2019
		

Crossrefs

Programs

  • Maple
    A026923 := proc(n)
        local a,p1,p2,p3 ;
        a := 0 ;
        for p1 from 0 to n do
            for p2 from 0 to (n-p1)/2 do
                p3 := (n-p1-2*p2)/3 ;
                if type(p3,'integer') and p3 >=1 and type(p1+p2+p3,'odd') then
                    a := a+1 ;
                end if:
            end do:
        end do:
        a;
    end proc: # R. J. Mathar, Aug 22 2019

Formula

a(n) + A026927(n) = A069905(n). - R. J. Mathar, Aug 22 2019
Conjectures from Colin Barker, Sep 01 2019: (Start)
G.f.: x^3*(1 - x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>11.
(End)