cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027006 a(n) = T(2*n+1, n+3), T given by A026998.

Original entry on oeis.org

1, 34, 281, 1397, 5353, 17643, 53062, 150833, 414210, 1114160, 2960806, 7814074, 20544191, 53902532, 141273663, 370060623, 969088727, 2537431693, 6643486220, 17393369595, 45537037936, 119218243314, 312118286876, 817137321092, 2139294503373, 5600747154678
Offset: 2

Views

Author

Keywords

Comments

Bisection of A053298.

Crossrefs

Programs

  • Magma
    A027006:= func< n | Lucas(2*n+7) -(12*n^4 +20*n^3 +81*n^2 +169*n +174)/6 >;
    [A027006(n): n in [2..40]]; // G. C. Greubel, Jul 22 2025
    
  • Mathematica
    A027006[n_]:= LucasL[2*n+7] -(12*n^4 +20*n^3 +81*n^2 +169*n +174)/6;
    Table[A027006[n], {n,2,42}] (* G. C. Greubel, Jul 22 2025 *)
  • PARI
    Vec(x^2*(1+26*x+35*x^2-12*x^3-2*x^4) / ((1-x)^5*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027006(n): return lucas_number2(2*n+7,1,-1) -(12*n^4 +20*n^3 +81*n^2 +169*n +174)//6
    print([A027006(n) for n in range(2,41)]) # G. C. Greubel, Jul 22 2025

Formula

G.f.: x^2*(1+26*x+35*x^2-12*x^3-2*x^4) / ((1-x)^5*(1-3*x+x^2)). - Colin Barker, Feb 19 2016
From G. C. Greubel, Jul 22 2025: (Start)
a(n) = Lucas(2*n+7) - (12*n^4 + 20*n^3 + 81*n^2 + 169*n + 174)/6.
E.g.f.: exp(3*x/2)*(29*cosh(p*x) + 26*p*sinh(p*x)) - (1/6)*(174 + 282*x + 225*x^2 + 92*x^3 + 12*x^4)*exp(x), where 2*p = sqrt(5). (End)