cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027009 a(n) = Sum_{k=floor((n+2)/2)..n} T(n, k), T given by A026998.

Original entry on oeis.org

1, 1, 9, 14, 46, 81, 209, 389, 901, 1726, 3774, 7349, 15541, 30561, 63329, 125294, 256366, 509161, 1033449, 2057549, 4154701, 8284926, 16673534, 33282989, 66837421, 133507081, 267724809, 535010414, 1071881326, 2142612801, 4290096449, 8577182549, 17167117141, 34326353086, 68686091454, 137351549669, 274790503141
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027009:= func< n | 2^(n+1) -(Lucas(n+3) +(-1)^n*Lucas(n))/2 >;
    [A027009(n): n in [1..40]]; // G. C. Greubel, Jul 11 2025
    
  • Mathematica
    LinearRecurrence[{2,3,-6,-1,2}, {1,1,9,14,46}, 41] (* G. C. Greubel, Jul 11 2025 *)
  • SageMath
    def lucas(n): return lucas_number2(n,1,-1)
    def A027009(n): return 2^(n+1) -(lucas(n+3) +(-1)^n*lucas(n))//2
    print([A027009(n) for n in range(1,41)]) # G. C. Greubel, Jul 11 2025

Formula

G.f.: x*(1-x+4*x^2-x^3-2*x^4)/((1-2*x)*(1+x-x^2)*(1-x-x^2)).
From G. C. Greubel, Jul 11 2025: (Start)
a(n) = 2^(n+1) - (1/2)*(A000032(n+3) + (-1)^n*A000032(n)).
E.g.f.: 1 + 2*exp(2*x) - 2*cosh(x/2)*cosh(sqrt(5)*x/2) - exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)). (End)

Extensions

More terms added by G. C. Greubel, Jul 11 2025