A027009 a(n) = Sum_{k=floor((n+2)/2)..n} T(n, k), T given by A026998.
1, 1, 9, 14, 46, 81, 209, 389, 901, 1726, 3774, 7349, 15541, 30561, 63329, 125294, 256366, 509161, 1033449, 2057549, 4154701, 8284926, 16673534, 33282989, 66837421, 133507081, 267724809, 535010414, 1071881326, 2142612801, 4290096449, 8577182549, 17167117141, 34326353086, 68686091454, 137351549669, 274790503141
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,-6,-1,2).
Programs
-
Magma
A027009:= func< n | 2^(n+1) -(Lucas(n+3) +(-1)^n*Lucas(n))/2 >; [A027009(n): n in [1..40]]; // G. C. Greubel, Jul 11 2025
-
Mathematica
LinearRecurrence[{2,3,-6,-1,2}, {1,1,9,14,46}, 41] (* G. C. Greubel, Jul 11 2025 *)
-
SageMath
def lucas(n): return lucas_number2(n,1,-1) def A027009(n): return 2^(n+1) -(lucas(n+3) +(-1)^n*lucas(n))//2 print([A027009(n) for n in range(1,41)]) # G. C. Greubel, Jul 11 2025
Formula
G.f.: x*(1-x+4*x^2-x^3-2*x^4)/((1-2*x)*(1+x-x^2)*(1-x-x^2)).
From G. C. Greubel, Jul 11 2025: (Start)
E.g.f.: 1 + 2*exp(2*x) - 2*cosh(x/2)*cosh(sqrt(5)*x/2) - exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)). (End)
Extensions
More terms added by G. C. Greubel, Jul 11 2025