cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027012 a(n) = T(2*n, n+1), T given by A027011.

Original entry on oeis.org

1, 6, 47, 199, 661, 1954, 5442, 14696, 39065, 103025, 270655, 709716, 1859412, 4869594, 12750611, 33383659, 87401977, 228824086, 599072310, 1568395100, 4106115485, 10749954101, 28143749827, 73681298664, 192900149736, 505019154414, 1322157317687
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{6,-13,13,-6,1},{6,47,199,661,1954},30]] (* Harvey P. Dale, Nov 17 2013 *)
  • PARI
    Vec(x*(1+24*x^2-18*x^3+6*x^4-x^5)/((1-x)^3*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016

Formula

a(1)=1, a(n) = Lucas(2*n+6) - (6*n^2+17*n+18). - Ralf Stephan, May 05 2005
From Colin Barker, Feb 19 2016: (Start)
a(n) = -8 + (2^(-1-n)*((3-sqrt(5))^n*(-15+7*sqrt(5))+(3+sqrt(5))^n*(15+7*sqrt(5))))/sqrt(5) + 13*(1+n) - 6*(1+n)*(2+n) for n>1.
a(n) = 6*a(n-1)-13*a(n-2)+13*a(n-3)-6*a(n-4)+a(n-5) for n>6.
G.f.: x*(1+24*x^2-18*x^3+6*x^4-x^5) / ((1-x)^3*(1-3*x+x^2)).
(End)

Extensions

More terms from Harvey P. Dale, Nov 17 2013