cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027018 a(n) = T(2*n+1, n+3), T given by A027011.

Original entry on oeis.org

1, 9, 150, 1085, 5283, 20495, 69007, 212020, 613633, 1708508, 4640978, 12414802, 32903418, 86731043, 227905816, 597838223, 1566763325, 4103989113, 10747219441, 28140274566, 73676929931, 192894712070, 505012447636, 1322149114676, 3461442847524, 9062189100301
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A027018:= func< n | n eq 2 select 1 else Lucas(2*n+8) -(1410 +1351*n +655*n^2 +230*n^3 +20*n^4 +24*n^5)/30 >;
    [A027018(n): n in [2..50]]; // G. C. Greubel, Jun 16 2025
    
  • Mathematica
    Table[LucasL[2*n+8] -(1410 +1351*n +655*n^2 +230*n^3 +20*n^4 +24*n^5)/30 + Boole[n==2], {n,2,50}] (* G. C. Greubel, Jun 16 2025 *)
  • PARI
    Vec(x^2*(1+103*x^2-30*x^3+69*x^4-73*x^5+34*x^6-9*x^7+x^8)/((1-x)^6*(1-3*x+x^2)) + O(x^40)) \\ Colin Barker, Feb 19 2016
    
  • SageMath
    def A027018(n): return lucas_number2(2*n+8,1,-1) -(1410 +1351*n +655*n^2 +230*n^3 +20*n^4 +24*n^5)//30 + int(n==2)
    print([A027018(n) for n in range(2,51)]) # G. C. Greubel, Jun 16 2025

Formula

G.f.: x^2*(1+103*x^2-30*x^3+69*x^4-73*x^5+34*x^6-9*x^7+x^8) / ((1-x)^6*(1-3*x+x^2)). - Colin Barker, Feb 19 2016
From G. C. Greubel, Jun 16 2025: (Start)
a(n) = A000032(2*n+8) - (1/30)*(1410 + 1351*n + 655*n^2 + 230*n^3 + 20*n^4 + 24*n^5) + [n=2].
E.g.f.: exp(3*x/2)*( 47*cosh(sqrt(5)*x/2) + 21*sqrt(5)*sinh(sqrt(5)*x/2) ) + x^2/2 - (1/30)*(1410 + 2280*x + 1845*x^2 + 950*x^3 + 260*x^4 + 24*x^5)*exp(x). (End)