A027026 a(n) = T(n,n+4), T given by A027023.
1, 25, 85, 215, 477, 985, 1949, 3755, 7113, 13329, 24805, 45959, 84917, 156625, 288573, 531323, 977873, 1799273, 3310133, 6089111, 11200525, 20601961, 37893981, 69699051, 128197785, 235793825, 433693893, 797688967, 1467180389
Offset: 4
Links
- G. C. Greubel, Table of n, a(n) for n = 4..1003
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2,-1,2,-1).
Programs
-
GAP
a:=[1,25,85,215,477,985];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 04 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019 -
Maple
seq(coeff(series(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 04 2019
-
Mathematica
Drop[CoefficientList[Series[x^4*(1+21*x-10*x^2-2*x^3-7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), {x,0,40}], x], 4] (* or *) LinearRecurrence[{4, -5, 2,-1,2,-1}, {1,25,85,215,477,985}, 40] (* G. C. Greubel, Nov 04 2019 *)
-
PARI
my(x='x+O('x^40)); Vec(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
-
Sage
def A027026_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))).list() a=A027026_list(50); a[4:] # G. C. Greubel, Nov 04 2019
Formula
G.f.: x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)). - Ralf Stephan, Feb 11 2004
a(n) = A000213(n+4) -2*n*(n+3), n>3. - R. J. Mathar, Jun 24 2020