cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027026 a(n) = T(n,n+4), T given by A027023.

Original entry on oeis.org

1, 25, 85, 215, 477, 985, 1949, 3755, 7113, 13329, 24805, 45959, 84917, 156625, 288573, 531323, 977873, 1799273, 3310133, 6089111, 11200525, 20601961, 37893981, 69699051, 128197785, 235793825, 433693893, 797688967, 1467180389
Offset: 4

Views

Author

Keywords

Programs

  • GAP
    a:=[1,25,85,215,477,985];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 04 2019
    
  • Maple
    seq(coeff(series(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 04 2019
  • Mathematica
    Drop[CoefficientList[Series[x^4*(1+21*x-10*x^2-2*x^3-7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)), {x,0,40}], x], 4] (* or *) LinearRecurrence[{4, -5, 2,-1,2,-1}, {1,25,85,215,477,985}, 40] (* G. C. Greubel, Nov 04 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 04 2019
    
  • Sage
    def A027026_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()
    a=A027026_list(50); a[4:] # G. C. Greubel, Nov 04 2019
    

Formula

G.f.: x^4*(1 +21*x -10*x^2 -2*x^3 -7*x^4 +5*x^5)/((1-x)^3*(1-x-x^2-x^3)). - Ralf Stephan, Feb 11 2004
a(n) = A000213(n+4) -2*n*(n+3), n>3. - R. J. Mathar, Jun 24 2020