cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027038 Diagonal sum of right-justified array T given by A027023.

Original entry on oeis.org

1, 1, 2, 5, 7, 18, 43, 103, 264, 687, 1809, 4836, 13049, 35493, 97218, 267857, 741791, 2063574, 5763595, 16155403, 45429488, 128121191, 362287433, 1026918632, 2917313257, 8304598593, 23685134746, 67669857661, 193652803391
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq( add(T(n-k,2*n-3*k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, 2*n-3*k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [sum(T(n-k, 2*n-3*k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019

Formula

a(n) = Sum_{k=0..n} T(n-k, 2*n-3*k), where T = A027023. - G. C. Greubel, Nov 05 2019
a(n) ~ 3^(n + 7/2) / (16 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 09 2025