A027038 Diagonal sum of right-justified array T given by A027023.
1, 1, 2, 5, 7, 18, 43, 103, 264, 687, 1809, 4836, 13049, 35493, 97218, 267857, 741791, 2063574, 5763595, 16155403, 45429488, 128121191, 362287433, 1026918632, 2917313257, 8304598593, 23685134746, 67669857661, 193652803391
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..750
Crossrefs
Cf. A027023.
Programs
-
Maple
T:= proc(n, k) option remember; if k<3 or k=2*n then 1 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n-k,2*n-3*k), k=0..n), n=0..30); # G. C. Greubel, Nov 05 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n-k, 2*n-3*k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 05 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<3 or k==2*n): return 1 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n-k, 2*n-3*k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 05 2019
Formula
a(n) = Sum_{k=0..n} T(n-k, 2*n-3*k), where T = A027023. - G. C. Greubel, Nov 05 2019
a(n) ~ 3^(n + 7/2) / (16 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 09 2025