cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027050 a(n) = T(n,2n-1), T given by A027023.

Original entry on oeis.org

1, 3, 5, 11, 25, 59, 145, 367, 949, 2495, 6645, 17883, 48541, 132711, 365073, 1009647, 2805365, 7827167, 21918997, 61584891, 173550677, 490408623, 1389206065, 3944231887, 11221911849, 31989733339, 91354992405, 261322661051
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A027023.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<3 or k=2*n then 1
        else add(T(n-1, k-j), j=1..3)
          fi
        end:
    seq(T(n,2*n-1), n=1..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    T[n_, k_]:= T[n, k]= If[n<0, 0, If[k<3 || k==2*n, 1, Sum[T[n-1, k-j], {j, 3}]]]; Table[T[n, 2*n-1], {n,30}] (* G. C. Greubel, Nov 05 2019 *)
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<3 or k==2*n): return 1
        else: return sum(T(n-1, k-j) for j in (1..3))
    [T(n, 2*n-1) for n in (1..30)] # G. C. Greubel, Nov 05 2019

Formula

Conjecture D-finite with recurrence (-n+1)*a(n) +3*(2*n-3)*a(n-1) +(-7*n+10)*a(n-2) +2*(-4*n+19)*a(n-3) +(5*n-23)*a(n-4) +(2*n-5)*a(n-5) +3*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 24 2020
a(n) ~ 3^(n + 5/2) / (4 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 08 2023