cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027053 a(n) = T(n,n+2), T given by A027052.

Original entry on oeis.org

1, 4, 9, 18, 35, 66, 123, 228, 421, 776, 1429, 2630, 4839, 8902, 16375, 30120, 55401, 101900, 187425, 344730, 634059, 1166218, 2145011, 3945292, 7256525, 13346832, 24548653, 45152014, 83047503, 152748174, 280947695, 516743376
Offset: 2

Views

Author

Keywords

Comments

Second differences of (A027026(n)-1)/2.
Pairwise sums of A089068.
a(n) is also the number of fixed polyominoes with n cells of height (or width) 2. - David Bevan, Sep 09 2009

Crossrefs

2nd column of A308359.

Programs

  • GAP
    a:=[1,4,9,18];; for n in [5..30] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 32); Coefficients(R!( x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
    
  • Maple
    seq(coeff(series(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2 ..30); # G. C. Greubel, Nov 05 2019
  • Mathematica
    LinearRecurrence[{2,0,0,-1}, {1,4,9,18}, 30] (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    my(x='x+O('x^32)); Vec(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    def A027053_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))).list()
    a=A027053_list(32); a[2:] # G. C. Greubel, Nov 05 2019
    

Formula

G.f.: x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)).
a(n) = A089068(n-1) + A089068(n).
a(n) = a(n-1) + a(n-2) + a(n-3) + 4. - David Bevan, Sep 09 2009
a(n) = A001590(n+3) - 2. - David Bevan, Sep 09 2009
a(n+1) - a(n) = A000213(n+1). - R. J. Mathar, Aug 04 2013