A027053 a(n) = T(n,n+2), T given by A027052.
1, 4, 9, 18, 35, 66, 123, 228, 421, 776, 1429, 2630, 4839, 8902, 16375, 30120, 55401, 101900, 187425, 344730, 634059, 1166218, 2145011, 3945292, 7256525, 13346832, 24548653, 45152014, 83047503, 152748174, 280947695, 516743376
Offset: 2
Links
- G. C. Greubel, Table of n, a(n) for n = 2..1001
- Doron Zeilberger, The generating functions and series expansions for 2D lattice-animals of globally bounded width. [Local copies of generating functions and series expansions].
- Index entries for sequences related to polyominoes
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
Crossrefs
2nd column of A308359.
Programs
-
GAP
a:=[1,4,9,18];; for n in [5..30] do a[n]:=2*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Nov 05 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 32); Coefficients(R!( x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019 -
Maple
seq(coeff(series(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)), x, n+1), x, n), n = 2 ..30); # G. C. Greubel, Nov 05 2019
-
Mathematica
LinearRecurrence[{2,0,0,-1}, {1,4,9,18}, 30] (* G. C. Greubel, Nov 05 2019 *)
-
PARI
my(x='x+O('x^32)); Vec(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 05 2019
-
Sage
def A027053_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3))).list() a=A027053_list(32); a[2:] # G. C. Greubel, Nov 05 2019
Formula
G.f.: x^2*(1+x)^2/((1-x)*(1-x-x^2-x^3)).
a(n) = a(n-1) + a(n-2) + a(n-3) + 4. - David Bevan, Sep 09 2009
a(n) = A001590(n+3) - 2. - David Bevan, Sep 09 2009
a(n+1) - a(n) = A000213(n+1). - R. J. Mathar, Aug 04 2013
Comments