A027054 a(n) = T(n, n+3), T given by A027052.
1, 8, 23, 52, 107, 210, 401, 754, 1405, 2604, 4811, 8872, 16343, 30086, 55365, 101862, 187385, 344688, 634015, 1166172, 2144963, 3945242, 7256473, 13346778, 24548597, 45151956, 83047443, 152748112, 280947631, 516743310
Offset: 3
Links
- G. C. Greubel, Table of n, a(n) for n = 3..1002
- Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1).
Programs
-
GAP
a:=[1,8,23,52,107];; for n in [6..33] do a[n]:=3*a[n-1]-2*a[n-2] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Nov 05 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 33); Coefficients(R!( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019 -
Maple
seq(coeff(series(x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)), x, n+1), x, n), n = 3..33); # G. C. Greubel, Nov 05 2019
-
Mathematica
LinearRecurrence[{3,-2,0,-1,1}, {1,8,23,52,107}, 30] (* G. C. Greubel, Nov 05 2019 *)
-
PARI
my(x='x+O('x^33)); Vec( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ) \\ G. C. Greubel, Nov 05 2019
-
Sage
def A027053_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ).list() a=A027053_list(33); a[3:] # G. C. Greubel, Nov 05 2019
Formula
From Colin Barker, Feb 19 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) for n>6.
G.f.: x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)). (End)
a(n) = A001590(n+4) -2*n -4, n>=3. - R. J. Mathar, Jun 15 2020