cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027054 a(n) = T(n, n+3), T given by A027052.

Original entry on oeis.org

1, 8, 23, 52, 107, 210, 401, 754, 1405, 2604, 4811, 8872, 16343, 30086, 55365, 101862, 187385, 344688, 634015, 1166172, 2144963, 3945242, 7256473, 13346778, 24548597, 45151956, 83047443, 152748112, 280947631, 516743310
Offset: 3

Views

Author

Keywords

Programs

  • GAP
    a:=[1,8,23,52,107];; for n in [6..33] do a[n]:=3*a[n-1]-2*a[n-2] -a[n-4]+a[n-5]; od; a; # G. C. Greubel, Nov 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 33); Coefficients(R!( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 05 2019
    
  • Maple
    seq(coeff(series(x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)), x, n+1), x, n), n = 3..33); # G. C. Greubel, Nov 05 2019
  • Mathematica
    LinearRecurrence[{3,-2,0,-1,1}, {1,8,23,52,107}, 30] (* G. C. Greubel, Nov 05 2019 *)
  • PARI
    my(x='x+O('x^33)); Vec( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ) \\ G. C. Greubel, Nov 05 2019
    
  • Sage
    def A027053_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)) ).list()
    a=A027053_list(33); a[3:] # G. C. Greubel, Nov 05 2019
    

Formula

From Colin Barker, Feb 19 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) for n>6.
G.f.: x^3*(1+5*x+x^2-x^3-2*x^4)/((1-x)^2*(1-x-x^2-x^3)). (End)
a(n) = A001590(n+4) -2*n -4, n>=3. - R. J. Mathar, Jun 15 2020