A027067 a(n) = Sum_{k=n..2*n} T(n,k), T given by A027052.
1, 1, 4, 10, 27, 77, 220, 632, 1821, 5257, 15206, 44068, 127951, 372173, 1084382, 3164498, 9248241, 27064057, 79296978, 232597316, 682960523, 2007206245, 5904191878, 17380855190, 51203234981, 150943862857, 445250129556
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T:= proc(n, k) option remember; if k=0 or k=2 or k=2*n then 1 elif k=1 then 0 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n, k), k=n..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]; Table[Sum[T[n, k], {k,n,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n, k) for k in (n..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
Formula
a(n) ~ 3^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Nov 06 2019