A027072 a(n) = self-convolution of row n of array T given by A027052.
1, 2, 3, 12, 53, 222, 899, 3540, 13657, 51882, 194727, 723760, 2668453, 9771870, 35577935, 128887616, 464885073, 1670362418, 5981289455, 21352860808, 76020123293, 269977176422, 956644165503, 3382864303648, 11940005836537
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>2*n then 0 elif k=0 or k=2 or k=2*n then 1 elif k=1 then 0 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n,k)*T(n,2*n-k), k=0..2*n), n=0..30); # G. C. Greubel, Nov 06 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n,k]*T[n,2*n-k], {k,0,2*n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>2*n): return 0 elif (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n,k)*T(n,2*n-k) for k in (0..2*n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019
Formula
a(n) = Sum_{k=0..2*n} T(n,k)*T(n,2*n-k), where T = A027052. - G. C. Greubel, Nov 06 2019