A027073 a(n) = Sum_{k=0..n} T(n,k) * T(n,2n-k), with T given by A027052.
1, 1, 2, 8, 31, 129, 510, 1970, 7513, 28253, 105176, 388330, 1423691, 5188577, 18812848, 67907520, 244160177, 874821817, 3124747792, 11130097846, 39544807851, 140180597013, 495886522916, 1750852227736, 6171019594129
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>2*n then 0 elif k=0 or k=2 or k=2*n then 1 elif k=1 then 0 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n,k)*T(n,2*n-k), k=0..n), n=0..30); # G. C. Greubel, Nov 06 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, 2*n - k], {k, 0, n}], {n,0,30}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>2*n): return 0 elif (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n,k)*T(n,2*n-k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 06 2019