A027077 a(n) = Sum_{k=n+1..2*n} T(n,k), T given by A027052.
1, 3, 8, 24, 71, 209, 612, 1784, 5189, 15081, 43838, 127528, 371395, 1082951, 3161866, 9243400, 27055153, 79280601, 232567194, 682905120, 2007104343, 5904004451, 17380510458, 51202600920, 150942696637, 445247984543
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>2*n then 0 elif k=0 or k=2 or k=2*n then 1 elif k=1 then 0 else add(T(n-1, k-j), j=1..3) fi end: seq( add(T(n,k), k=n+1..2*n), n=1..30); # G. C. Greubel, Nov 06 2019
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k], {k, n+1, 2*n}], {n, 1, 30}] (* G. C. Greubel, Nov 06 2019 *)
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>2*n): return 0 elif (k==0 or k==2 or k==2*n): return 1 elif (k==1): return 0 else: return sum(T(n-1, k-j) for j in (1..3)) [sum(T(n,k) for k in (n+1..2*n)) for n in (1..30)] # G. C. Greubel, Nov 06 2019
Extensions
Offset changed by G. C. Greubel, Nov 06 2019