cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027086 a(n) = A027082(n, n+4).

Original entry on oeis.org

11, 41, 108, 246, 517, 1035, 2010, 3828, 7199, 13429, 24920, 46090, 85065, 156791, 288758, 531528, 978099, 1799521, 3310404, 6089406, 11200845, 20602307, 37894354, 69699452, 128198215, 235794285, 433694384, 797689490, 1467180945, 2698567791, 4963441390
Offset: 4

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[11,41,108,246,517,1035]; [n le 6 select I[n] else 4*Self(n-1)-5*Self(n-2)+2*Self(n-3)-Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Feb 20 2016
  • Mathematica
    LinearRecurrence[{4, -5, 2, -1, 2, -1}, {11, 41, 108, 246, 517, 1035}, 35] (* Vincenzo Librandi, Feb 20 2016 *)
  • PARI
    Vec(x^4*(11-3*x-x^2-3*x^3+2*x^4)/((1-x)^3*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 20 2016
    

Formula

a(n) = A027026(n) + (n+1)(n+2)/2 - 3.
From Colin Barker, Feb 20 2016: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3)-a(n-4)+2*a(n-5)-a(n-6) for n>9.
G.f.: x^4*(11-3*x-x^2-3*x^3+2*x^4) / ((1-x)^3*(1-x-x^2-x^3)).
(End)
a(n) = A000213(n+4) -4 -3*n*(n+3)/2. - R. J. Mathar, Jun 24 2020