cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027186 Triangular array E by rows: E(n,k) = number of partitions of n into an even number of parts, the least being k.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, 5, 1, 1, 0, 0, 0, 0, 8, 2, 1, 1, 0, 0, 0, 0, 10, 2, 1, 1, 0, 0, 0, 0, 0, 16, 3, 1, 1, 1, 0, 0, 0, 0, 0, 20, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 29, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 37, 7, 2, 1, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			 0,
 1, 0,
 1, 0, 0,
 2, 1, 0, 0,
 2, 1, 0, 0, 0,
 4, 1, 1, 0, 0, 0,
 5, 1, 1, 0, 0, 0, 0,
 8, 2, 1, 1, 0, 0, 0, 0,
10, 2, 1, 1, 0, 0, 0, 0, 0,
16, 3, 1, 1, 1, 0, 0, 0, 0, 0,
20, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0,
29, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0,
37, 7, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
		

Crossrefs

Cf. A027185.

Formula

E(n, k) = O(n-k, k)+O(n-k, k+1)+...+O(n-k, n-k), for 2<=2k<=n, O given by A027185.