A027185 Triangular array O by rows: O(n,k) = number of partitions of n into an odd number of parts, the least being k.
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 1, 12, 2, 1, 0, 0, 0, 0, 0, 1, 14, 4, 1, 0, 0, 0, 0, 0, 0, 1, 22, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1, 27, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 40, 7, 3, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 6, 1, 0, 0, 0, 0, 1, 7, 2, 0, 0, 0, 0, 0, 1, 12, 2, 1, 0, 0, 0, 0, 0, 1, 14, 4, 1, 0, 0, 0, 0, 0, 0, 1, 22, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1, 27, 6, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 40, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1,
Crossrefs
Cf. A027186.
Formula
O(n, k) = E(n-k, k)+E(n-k, k+1)+...+E(n-k, n-k), for 2<=2k<=n, E given by A027186.