A027186 Triangular array E by rows: E(n,k) = number of partitions of n into an even number of parts, the least being k.
0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, 5, 1, 1, 0, 0, 0, 0, 8, 2, 1, 1, 0, 0, 0, 0, 10, 2, 1, 1, 0, 0, 0, 0, 0, 16, 3, 1, 1, 1, 0, 0, 0, 0, 0, 20, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 29, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 37, 7, 2, 1, 1, 1, 0, 0, 0, 0
Offset: 1
Examples
0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 4, 1, 1, 0, 0, 0, 5, 1, 1, 0, 0, 0, 0, 8, 2, 1, 1, 0, 0, 0, 0, 10, 2, 1, 1, 0, 0, 0, 0, 0, 16, 3, 1, 1, 1, 0, 0, 0, 0, 0, 20, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 29, 6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 37, 7, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
Crossrefs
Cf. A027185.
Formula
E(n, k) = O(n-k, k)+O(n-k, k+1)+...+O(n-k, n-k), for 2<=2k<=n, O given by A027185.