cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027200 Triangular array T read by rows: T(n,k) = number of partitions of n into an even number of parts, each >=k.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 1, 0, 0, 0, 6, 2, 1, 0, 0, 0, 7, 2, 1, 0, 0, 0, 0, 12, 4, 2, 1, 0, 0, 0, 0, 14, 4, 2, 1, 0, 0, 0, 0, 0, 22, 6, 3, 2, 1, 0, 0, 0, 0, 0, 27, 7, 3, 2, 1, 0, 0, 0, 0, 0, 0, 40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 69, 17, 7, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Examples

			 Triangle begins:
   0;
   1,  0;
   1,  0, 0;
   3,  1, 0, 0;
   3,  1, 0, 0, 0;
   6,  2, 1, 0, 0, 0;
   7,  2, 1, 0, 0, 0, 0;
  12,  4, 2, 1, 0, 0, 0, 0;
  14,  4, 2, 1, 0, 0, 0, 0, 0;
  22,  6, 3, 2, 1, 0, 0, 0, 0, 0;
  27,  7, 3, 2, 1, 0, 0, 0, 0, 0, 0;
  40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0;
  49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • PARI
    T(n, k) = polcoef(sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023

Formula

T(n, k) = Sum{E(n, i)}, k<=i<=n, E given by A027186.
T(n,k) + A027199(n,k) = A026807(n,k). - R. J. Mathar, Oct 18 2019
G.f. of column k: Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i} (1-x^j). - Seiichi Manyama, May 15 2023

Extensions

More terms from Seiichi Manyama, May 15 2023