A027200 Triangular array T read by rows: T(n,k) = number of partitions of n into an even number of parts, each >=k.
0, 1, 0, 1, 0, 0, 3, 1, 0, 0, 3, 1, 0, 0, 0, 6, 2, 1, 0, 0, 0, 7, 2, 1, 0, 0, 0, 0, 12, 4, 2, 1, 0, 0, 0, 0, 14, 4, 2, 1, 0, 0, 0, 0, 0, 22, 6, 3, 2, 1, 0, 0, 0, 0, 0, 27, 7, 3, 2, 1, 0, 0, 0, 0, 0, 0, 40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 69, 17, 7, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Triangle begins: 0; 1, 0; 1, 0, 0; 3, 1, 0, 0; 3, 1, 0, 0, 0; 6, 2, 1, 0, 0, 0; 7, 2, 1, 0, 0, 0, 0; 12, 4, 2, 1, 0, 0, 0, 0; 14, 4, 2, 1, 0, 0, 0, 0, 0; 22, 6, 3, 2, 1, 0, 0, 0, 0, 0; 27, 7, 3, 2, 1, 0, 0, 0, 0, 0, 0; 40, 11, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0; 49, 12, 5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0;
Programs
-
PARI
T(n, k) = polcoef(sum(i=0, n, x^(2*k*i)/prod(j=1, 2*i, 1-x^j+x*O(x^n))), n); \\ Seiichi Manyama, May 15 2023
Formula
T(n, k) = Sum{E(n, i)}, k<=i<=n, E given by A027186.
G.f. of column k: Sum_{i>=0} x^(2*k*i)/Product_{j=1..2*i} (1-x^j). - Seiichi Manyama, May 15 2023
Extensions
More terms from Seiichi Manyama, May 15 2023