cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027219 a(n) = Sum_{k=0..n} (k+1) * A026736(n,k).

Original entry on oeis.org

1, 3, 8, 20, 50, 117, 283, 639, 1512, 3338, 7774, 16898, 38884, 83566, 190488, 405848, 918120, 1942813, 4367665, 9191499, 20555546, 43061789, 95874233, 200083005, 443770612, 923124007, 2040635445, 4233080627, 9330343290
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A026736.

Programs

  • GAP
    T:= function(n, k)
        if k=0 or k=n then return 1;
        elif k=n-1 then return n;
        elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k);
        else return T(n-1, k-1) + T(n-1, k);
        fi;
      end;
    List([0..20], n-> Sum([0..n], k-> (k+1)*T(n, k) )); # G. C. Greubel, Jul 19 2019
  • Mathematica
    T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1,k-1] + T[n-2,k-1] + T[n-1,k], T[n-1,k-1] + T[n-1,k]]]; Table[Sum[(k+1)*T[n,k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jul 19 2019 *)
  • PARI
    T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) ));
    vector(20, n, n--; sum(k=0, n, (k+1)*T(n, k)) ) \\ G. C. Greubel, Jul 19 2019
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k==0 or k==n): return 1
        elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
        else: return T(n-1, k-1) + T(n-1, k)
    [sum((k+1)*T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jul 19 2019