A027221 Sum of squares of numbers in row n of array T given by A026736.
1, 2, 6, 20, 79, 284, 1237, 4542, 20626, 76406, 354080, 1317964, 6173634, 23051344, 108628550, 406513364, 1922354351, 7206349304, 34147706833, 128187589014, 608151037123, 2285559568866, 10850577045131, 40817923301712, 193850277807569, 729825857819924, 3466587141136257
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A026736.
Programs
-
GAP
T:= function(n, k) if k=0 or k=n then return 1; elif k=n-1 then return n; elif (n mod 2)=0 and k=Int((n-2)/2) then return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k); else return T(n-1, k-1) + T(n-1, k); fi; end; List([0..21], n-> Sum([0..n], k-> T(n, k)^2 )); # G. C. Greubel, Jul 19 2019
-
Mathematica
T[n_, k_]:= T[n, k] = If[k==0 || k==n, 1, If[EvenQ[n] && k==(n-2)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k]]]; Table[Sum[T[n, k]^2, {k,0,n}], {n,0,40}] (* G. C. Greubel, Jul 19 2019 *)
-
PARI
T(n, k) = if(k==n || k==0, 1, k==n-1, n, if((n%2)==0 && k==(n-2)/2, T(n-1, k-1) + T(n-2, k-1) + T(n-1, k), T(n-1, k-1) + T(n-1, k) )); vector(21, n, n--; sum(k=0, n, T(n, k)^2 ) ) \\ G. C. Greubel, Jul 19 2019
-
Sage
@CachedFunction def T(n, k): if (k==0 or k==n): return 1 elif (mod(n, 2)==0 and k==(n-2)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k) else: return T(n-1, k-1) + T(n-1, k) [sum(T(n,k)^2 for k in (0..n)) for n in (0..40)] # G. C. Greubel, Jul 19 2019