cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027286 a(n) = Sum_{k=0..2n} (k+1) * A026584(n, k).

Original entry on oeis.org

1, 4, 18, 56, 190, 564, 1722, 4976, 14454, 40940, 115698, 322728, 896558, 2471588, 6786090, 18537184, 50459366, 136844892, 370030434, 997705240, 2683514526, 7201203988, 19284880794, 51546789456, 137541880150, 366412976332
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,4,18,56]; [n le 4 select I[n] else 2*Self(n-1) +7*Self(n-2) -8*Self(n-3) -16*Self(n-4): n in [1..31]]; // G. C. Greubel, Dec 12 2021
    
  • Mathematica
    LinearRecurrence[{2,7,-8,-16},{1,4,18,56}, 30] (* G. C. Greubel, Dec 12 2021 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -16,-8,7,2]^n*[1;4;18;56])[1,1] \\ Charles R Greathouse IV, Oct 21 2022
  • Sage
    [2^(n-1)*(n+1)*(14*lucas_number2(n+2, 1/2, -1) + 5*lucas_number2(n+1, 1/2, -1))/17 for n in (0..30)] # G. C. Greubel, Dec 12 2021
    

Formula

G.f.: (1+2*x+3*x^2)/(1-x-4*x^2)^2.
From G. C. Greubel, Dec 12 2021: (Start)
a(n) = 2^(n-3)*( -6*F(n+1, 1/2) + Sum_{j=0..n} F(n-j+1, 1/2)*( 14*F(j+1, 1/2) + 5*F(j, 1/2) ), where F(n, x) are the Fibonacci polynomials.
a(n) = (2^(n-1)/17)*(n+1)*( 14*L(n+2, 1/2) + 5*L(n+1, 1/2) ), where L(n, x) are the Lucas polynomials.
a(n) = 2*a(n-1) + 7*a(n-2) - 8*a(n-3) - 16*a(n-4). (End)