A027302 a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315.
1, 2, 9, 24, 95, 286, 1099, 3536, 13479, 45220, 172150, 594320, 2265003, 7983990, 30487175, 109174560, 417812417, 1514797020, 5810065898, 21275014800, 81775140083, 301892460012, 1162703549474, 4321730134624, 16675372590850, 62340424959176, 240949471232124
Offset: 1
Keywords
Links
- Alon Regev, The central component of a triangulation, arXiv:1210.3349 [math.CO], 2012, see p. 6.
- Alon Regev, The Central Component of a Triangulation, J. Int. Seq. 16 (2013) #13.4.1
Programs
-
Mathematica
a[n_] := With[{C = CatalanNumber}, Sum[C[k]*C[n+1-k], {k, 1, (n+1)/2}]]; Array[a, 30] (* Jean-François Alcover, May 01 2017 *)
-
Sage
def C(n): return binomial(2*n,n)/(n+1) # Catalan numbers def A027302(n): return add(C(k)*C(n+1-k) for k in (1..(n+1)/2)) [A027302(n) for n in (1..22)] # Peter Luschny, Jun 27 2013
Formula
Conjecture D-finite with recurrence -(n+2)*(13*n-2)*(3+n)^2*a(n) +10*(8*n^2+3*n-8)*(n+2)^2*a(n-1) +8*(12*n^4+47*n^3+52*n^2+67*n+20)*a(n-2) -160*(8*n^2+3*n-8)*(n-1)^2*a(n-3) +128*(7*n+4)*(2*n-5)*(-2+n)^2*a(n-4)=0. - R. J. Mathar, Nov 22 2024
Extensions
More terms from Sean A. Irvine, Oct 26 2019
Comments