cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027302 a(n) = Sum_{k=0..floor((n-1)/2)} T(n,k) * T(n,k+1), with T given by A008315.

Original entry on oeis.org

1, 2, 9, 24, 95, 286, 1099, 3536, 13479, 45220, 172150, 594320, 2265003, 7983990, 30487175, 109174560, 417812417, 1514797020, 5810065898, 21275014800, 81775140083, 301892460012, 1162703549474, 4321730134624, 16675372590850, 62340424959176, 240949471232124
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of Dyck (n+2)-paths with UU spanning the midpoint. E.g., for n=2 the two Dyck 4-paths are UUDU.UDDD and UDUU.UDDD where dot marks the midpoint. - David Scambler, Feb 11 2011
Apparently also the number of returns to the left of or to the midpoint of all Dyck paths with semilength n+1. - David Scambler, Apr 30 2013

Programs

  • Mathematica
    a[n_] := With[{C = CatalanNumber}, Sum[C[k]*C[n+1-k], {k, 1, (n+1)/2}]]; Array[a, 30] (* Jean-François Alcover, May 01 2017 *)
  • Sage
    def C(n): return binomial(2*n,n)/(n+1)  # Catalan numbers
    def A027302(n): return add(C(k)*C(n+1-k) for k in (1..(n+1)/2))
    [A027302(n) for n in (1..22)]  # Peter Luschny, Jun 27 2013

Formula

Conjecture D-finite with recurrence -(n+2)*(13*n-2)*(3+n)^2*a(n) +10*(8*n^2+3*n-8)*(n+2)^2*a(n-1) +8*(12*n^4+47*n^3+52*n^2+67*n+20)*a(n-2) -160*(8*n^2+3*n-8)*(n-1)^2*a(n-3) +128*(7*n+4)*(2*n-5)*(-2+n)^2*a(n-4)=0. - R. J. Mathar, Nov 22 2024

Extensions

More terms from Sean A. Irvine, Oct 26 2019