A027347 Number of partitions of n into distinct odd parts, the least being congruent to 1 mod 4.
1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 3, 3, 5, 6, 6, 5, 7, 9, 8, 8, 11, 12, 12, 12, 15, 18, 17, 18, 22, 25, 25, 26, 30, 34, 34, 36, 42, 47, 48, 50, 57, 64, 65, 69, 78, 85, 89, 93, 104, 114, 118, 125, 139, 151, 157, 166, 183, 198, 207, 219, 240
Offset: 1
Crossrefs
Cf. A026832.
Programs
-
Maple
G := add( q^(4*n+1)*mul( 1 + q^(2*k+1), k = 2*n+1..50 ), n = 0..25 ): S := series(G, q, 101): seq(coeff(S, q, j), j = 1..100); # Peter Bala, Jan 31 2021
Formula
From Peter Bala, Jan 31 2021: (Start)
G.f.: A(q) = Sum_{n >= 0} q^(4*n+1) * Product_{k >= 2*n+1} 1 + q^(2*k+1).
A(q) = Limit_{N -> oo} Sum_{n = 0..2*N+1} (-1)^n * Product_{k = n..2*N+1} 1 + q^(2*k+1) = Limit_{N -> oo} Sum_{n = 0..2*N+1} (-1)^n * Product_{k >= n} 1 + q^(2*k+1). (End)