cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143063 Expansion of the product of a false theta function and a Ramanujan theta function in powers of x.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 2, 0, 2, 4, 4, 2, 4, 6, 4, 4, 4, 8, 8, 6, 8, 12, 10, 10, 12, 16, 16, 14, 18, 22, 22, 20, 24, 30, 32, 30, 36, 42, 42, 42, 48, 56, 60, 58, 66, 76, 78, 80, 88, 102, 106, 108, 120, 134, 140, 144, 158, 178, 186, 192, 210, 232, 242, 252, 272, 300
Offset: 0

Views

Author

Michael Somos, Jul 21 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^3 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^14 + 4*x^15 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 235, Entry 9.4.8
  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 41, 14th equation.

Crossrefs

Programs

  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); polcoeff( sum(k=0, n, if( issquare( 24*k + 1, &m), (-1)^(m \ 3) * x^k ), A) / eta(x + A) * eta(x^2 + A)^2 / eta(x^4 + A), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * sum(k=1, sqrtint(n+1) - 1, x^(k^2 + 2*k) / (1 - x^(4*k)) / prod(j=1, k-1, 1 - x^(2*j), 1 + O(x^(n + 1 - k^2 - 2*k)))), n))};

Formula

G.f.: (1 - x + x^2 - x^5 + x^7 - x^12 + x^15 - ...) * (1 + x) * (1 + x^3) * (1 + x^5) * (1 + x^7) * ... [Ramanujan]
G.f.: 1 + 2 * x^3 / (1 - x^4) + 2 * x^8 / ((1 - x^2) * (1 - x^8)) + 2 * x^15 / ((1 - x^2) * (1 - x^4) * (1 - x^12)) + 2 * x^24 / ((1 - x^2) * (1 - x^4) * (1 - x^6) * (1 - x^16)) + ... [Ramanujan]
a(n) = 2 * A027348(n) unless n=0. Convolution of A143062 and A000700.
Showing 1-1 of 1 results.