cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027356 Array read by rows: T(n,k) = number of partitions of n into distinct odd parts in which k is the greatest part, for k=1,2,...,n, n>=1.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0
Offset: 1

Views

Author

Clark Kimberling, revised Jul 23 2004

Keywords

Comments

First T(n,k) not 0 or 1 is T(17,9)=2, which counts 1+7+9 and 3+5+9. Row sums: A000700.

Examples

			First 5 rows:
1
0 0
0 0 1
0 0 1 0
0 0 0 0 1
Row 40 with even-numbered terms deleted:
0 0 0 0 0 0 2 5 6 7 6 5 4 3 2 1 1 1 1;
E.g. final 2 counts these two partitions: 9+31 and 1+3+5+31.
		

Crossrefs

Cf. A000700.
T(4n+1,2n+1) gives A069910.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i^2, 0, `if`(n=0, 1,
          b(n, i-1) +(p-> `if`(p>n, 0, b(n-p, i-1)))((2*i-1))))
        end:
    T:= (n, k)-> `if`(k::even, 0, b(n-k, (k-1)/2)):
    seq(seq(T(n, k), k=1..n), n=1..20);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i^2, 0, If[n == 0, 1, b[n, i - 1] + Function[p, If[p > n, 0, b[n - p, i - 1]]][2i - 1]]];
    T [n_, k_] := If[EvenQ[k], 0, b[n - k, (k - 1)/2]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

Formula

T(n, 1)=0 for all n; T(n, n)=1 for all odd n>1; and for n>=3, T(n, k)=0 if k is even, else T(n, k)=Sum{T(n-k, i): i=1, 2, ..., n-1} for k=2, 3, ..., n-1.

Extensions

Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar